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An efficient and accurate 3D algorithm for dynamical simulations of many de-
formable drops with strong hydrodynamical interactions at zero Reynolds numbers
is developed. The drop-to-medium viscosity ratio,λ, and the Bond number are ar-
bitrary, and the drops are subject to gravity with stationary triply periodic boundary
conditions. The algorithm, at each step, is a hybrid of boundary-integral and eco-
nomical multipole techniques, with extensive use of rotational transformations and
economical truncation of multipole expansions to optimize near-field interactions. A
significant part of the code is the new, “best paraboloid-spline” technique for calcu-
lating the normal vectors and curvatures on drop surfaces, which greatly improves the
quality of long-time simulations. Examples show the phenomenon of clustering in
a concentrated sedimenting emulsion forλ= 0.25 and 1, which leads to an increase
in the average sedimentation velocity with time. A high efficiency of the method
is demonstrated, with two orders-of-magnitude gains over the standardO(N2N2

4)
boundary-integral technique forN∼ 102 drops in a periodic cell withN4 ∼ 103 tri-
angular boundary elements per drop, so that typical long-time dynamical simulations
can be performed in a few days or weeks on a standard workstation (as compared to
the several years which would be required for the same simulations using standard
boundary-integral techniques). The effects of drop triangulation and truncation of
multipole expansions on dynamical simulations are assessed.c© 2000 Academic Press

Key Words:deformable drops; hydrodynamical interactions; boundary integrals;
Stokes flow; sedimentation; multipole methods.

1. INTRODUCTION

The motion of deformable drops at small Reynolds number is relevant to blood rheology
and many processes in chemical engineering and biotechnology. So far, computational
progress has been primarily restricted to simulations of one or two drops by boundary-
integral methods [1] (see [2, 3], for example, for an extended list of recent studies). Limited
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3D simulations exist for more (10–12) drops falling under gravity [4] or subject to shear with
periodic boundaries [5]; the methods used in these studies are direct, with the computational
requirements scaling asO(N2N2

4) per time step (whereN is the number of drops andN1
is the number of boundary elements per drop), thus not allowing calculations to proceed to
N ≥O(102) with adequate resolutionsN4 ≥O(103), especially for an arbitrary drop-to-
medium viscosity ratio,λ. In 2D, larger systems (N= 25–49) have been considered [6, 7],
still by anO(N2N2

4)method, and the simplest use of Taylor expansions to optimize remote
interactions was tested [6], although with only a modest gain. Greater progress has been
made in simulating large hydrodynamical systems of solid spheres. Ladd [8] was able to
dynamically simulate up to 32000 spheres in sedimentation by a lattice-Boltzmann method
[9, 10]. However, it would be a non-trivial task to adapt this approach to boundary conditions
other than no slip, and we are not aware if this method has been applied to drops, with or
without deformations. Sangani and Mo [11] developed the first hydrodynamical version of
the traditional fast multipole method (FMM) [12] with periodic boundaries for spherical
particles and applied it to study sedimentation, effective viscosity, and permeability of
random static configurations. By taking a few multipoles per particle (and adding lubrication
analytically [13], when necessary), they circumvented the difficulty with the traditional
FMM becoming inefficient for high-order multipoles and could consider large systems,
up to N= 8000; potentially, their code should be applicable to spherical drops as well.
Unfortunately, this potential is not realizable for drops with deformation; each of them is
necessarily an object with a large number of parameters (collocation nodes on the surface),
thus limiting dynamical simulations to much smallerN.

In the present paper, an efficient and accurate 3D algorithm for dynamical simulations of
many deformable drops with strong hydrodynamical interactions at zero Reynolds number
is constructed. For simplicity, a stationary, cubic periodic cell is assumed, and the drops are
subject to gravity, which includes applications to emulsion sedimentation; a generalization
for rheology simulations will be possible in future work. The algorithm, at each time step,
is a hybrid of the boundary-integral and economical multipole techniques; in the multipole
part, however, our code does not follow the line of FMM, but rather develops the approach
initiated in conductivity simulations by Zinchenko for 2D [14, 15] and 3D [16, 17] problems.
Derivation of the boundary-integral equation for sedimenting systems requires some caution
(because an additive constant in the velocity affects calculation of the sedimentation rate),
and we devote some space to it in Section 2. In Subsection 3.1, a general scheme for
fast summation of interactions between collocation nodes on drop surfaces is described.
Drops are sliced gridlessly into compact blocks. The near-field interactions between blocks,
when possible, are calculated by multipole reexpansions from Lamb’s singular to regular
forms, using a rotation-based scheme to reduce the cost of this operation fromO(n4) to
O(n3), wheren is the order of multipoles retained for the pair (Subsection 3.3). Although
rotational transformations of spherical harmonics by Wigner functions have long been
known in quantum mechanics [18], it was not until more recent work [16] that their relevance
to fast summation of interactions was recognized and exploited (surprisingly, the FMM
papers prior to 1996 have all used the less efficient, directO(n4) scheme for their cell-
to-cell reexpansions). Lamb’s singular moments for individual blocks are also calculated
by rotations, which gives a fixed, but almost several-fold, gain compared to direct moment
evaluation (Subsection 3.2). “Far-field” interactions, associated with periodic images, are
treated by Taylor expansions of arbitrary order and Ewald-like forms for Green’s functions
(Subsection 3.4). Another feature borrowed from [16] is the “economical truncation” of
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multipole expansions, i.e., a broad spectrum of truncation bounds strongly dependent on
mutual geometry of the blocks for optimized performance; unlike in [16], however, we have
to construct these bounds in a more empirical manner for a given precision (Subsection 3.5).
Although loaded with multipole details, necessarily cumbersome in hydrodynamics, our
scheme for summing interactions seeks to minimize the use of costly direct summations in
a logically simple way. Fast summation is only a part of the problem, and Section 4 describes
a new, “best paraboloid-spline” (BPS) method for calculating the curvatures and normals,
which greatly improves the quality of long-time dynamical simulations. Subsection 5.1
outlines the passive mesh stabilization technique [3] used to maintain the quality of our
unstructured drop triangulations with fixed topology.

Examples of long-time dynamical simulations in Section 6 demonstrate the phenomenon
of clustering in a concentrated sedimenting emulsion of many deformable drops atλ= 0.25
and 1, and also show a high efficiency of the code, with two orders-of-magnitude gains
over theO(N2N2

4) method at sufficient accuracy forN=O(102) andN4 =O(103). The
effects of multipole truncation and triangulation on long-time simulations are also analyzed.
Section 7 discusses the prospects and limitations of the proposed approach.

Some other recent methods for fast summation of interactions include particle-particle/
particle-mesh (P3M) (see [19–23] and references therein), FFT-accelerated FMM [24],
rotation-accelerated FMM [25], and finally, the new 3D FMM [26]. These methods are
general purpose for an arbitrary distribution of charges, while our approach substantially
uses natural grouping of collocation nodes into interfacial surfaces (which still includes a
large number of applications, with deformable drops, arbitrary-shaped suspended particles,
granular materials, etc.). However, these previous developments and implementations, to
our knowledge, are for Coulombic interactions only, thus not allowing for comparisons with
the present approach in the solution of the same hydrodynamic (or similar) problems. Even
with rotations incorporated in the latest FMM versions [25, 26], the approach initiated in
[16] and further developed herein is deeply different from FMM, in treating both close and
remote interactions. Very high gains achieved by our code over theO(N2N2

4) method for
practicalN andN4, combined with a simple logic (compared to P3M and FMM), can make
our approach attractive for disperse media simulations. ForN∼ 103, alternatives should
be considered. However, regardless of the method, it may not be possible to dynamically
simulate such large concentrated systems of deformable 3D drops with adequate resolution
N4 ∼ 103 on present-day workstations. All timings below are for a DEC 500au, a single
processor 500 MHz UNIX workstation with FORTRAN 77 optimizing compiler.

2. BOUNDARY-INTEGRAL FORMULATION

Consider an infinite set of deformable drops of the same densityρint and viscosityµint

slowly settling under gravity in a medium of densityρext and viscosityµext. An equivalent
radius of non-deformed drops isao (assumed, for simplicity, to be the same for all drops)
and the Bond number isB= (ρint− ρext)ga2

o/σ , whereσ is the constant surface tension.
The drop system is obtained from the basic configuration ofN drops with surface centroids
xc

1 . . . xc
N in the cellV by triply periodic continuation into the whole space. No external

flow is imposed, and so the basic cellV does not change with time and can be taken as the
unit cube [0, 1)× [0, 1)× [0, 1), if the cell sideL is chosen as the characteristic length for
nondimensionalization; thex3-axis is antiparallel to the gravity acceleration vectorg. The
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fluid velocityv(x) is triply periodic, while the pressure has a linear part plus a periodic part.
A system of boundary-integral equations forv(x) on drop surfacesS1, . . . SN is facilitated
through the use of the periodic nondimensional Green functionsG(k)(x), k= 1, 2, 3 [27–29]
and corresponding stress tensorsτ (k)(x) (these functions are discussed more in detail in
Subsection 3.4). With the normalization used in the present work, the vectorsG(k)(x) and
the corresponding pressuresq(k)(x) satisfy

∇2G(k)(x)−∇q(k)(x) =∇ · τ (k)(x) =
∑

m

δ(x−m) ek, (2.1)

where the summation is over all latice pointsm= (m1,m2,m3) with integerm1,m2,m3,
andek (k= 1, 2, 3) are basis vectors. UnlikeG(k)(x), the pressureq(k)(x) and stress tensor

τ (k) = −q(k)I + (∇+∇T )G(k) (2.2)

are linear plus periodic functions. The additive constants inG(k) are chosen so that the
average ofG(k) overV is zero (which is equivalent to the requirement that the flux ofG(k)

through any face of the periodic cell is zero). Besides, we choose the reference frame so
that the average fluid velocity〈v〉 overV is also zero.

Green’s theorem gives, for a pointy∈V lying outside the drops,

vext
k (y) = −

N∑
β=1

∫
Sβ

[
v(x) · τ (k)(x− y) · n(x)−G(k)(x− y) · Text(x) · n(x)]dSx. (2.3)

Here,n(x) is the outward unit normal atx∈Sβ . The velocityv and the corresponding stress
tensorT (without the hydrostatic term) have been made nondimensional by choosing the
scalesL2(ρint− ρext)g/µext and(ρint− ρext)gL for vandT, respectively; the indicesextand
int mark the values related to the continuous and drop phases, respectively. To rigorously
derive (2.3), Green’s theorem is applied to the volumeD f of the cell V lying outside
the drops (shaded in Fig. 1). Periodic parts of the integrand (2.3) do not contribute to the
integrals over the cell boundaries. Linear parts make nonzero contributions (if some drops
intersect∂V). However, by the relations∫

∂Vext+∂Vint

(v · n)x dS=
∫

V
vdV = 0, (2.4a)∫

∂Vext+∂Vint

[
G(k)(x− y) · n(x)]x dSx =

∫
V

G(k)(x− y) dVx = 0 (2.4b)

(where∂Vext and∂Vint are parts of the boundary∂V lying outside and inside the drops,
respectively), the integrals of the linear terms over∂Vext can be combined with those over
drop surface portions lying insideV to produce full surface integrals, which rigorously
gives (2.3).

Similar to (2.3),

0=
N∑
β=1

∫
Sβ

[
λv(x) · τ (k)(x− y)−G(k)(x− y) · Tint(x)

] · n(x) dSx (2.5)
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FIG. 1. The derivation of the boundary-integral equation for a system of sedimenting deformable drops (a
2D sketch, not to scale). The boundary ofD f is marked bold. For dropSβ and its periodic image, the integrals
of (v · n)x and(G(k) · n)x over the surface portionsS′β , S′′β and the cell boundary portions

∑′
β
,
∑′′

β
combine to

boundary integrals of(v · n)x and(G(k) · n)x over the entireSβ .

for anyy∈V lying outside the drops, whereλ=µint/µext is the drop-to-medium viscosity
ratio. Using the boundary conditions and taking the limity→ Sα now gives a system of
nondimensional boundary-integral equations forv(x) in a standard way:

vk(y) = 2κ
N∑
β=1

∫
Sβ

v(x) · τ (k)(x− y) · n(x) dSx + Fk(y). (2.6)

Here,κ = (λ− 1)/(λ+ 1), the inhomogeneous term is

F(y) = 2

λ+ 1

N∑
β=1

∫
Sβ

f (x)G(x− y) · n(x) dSx, (2.7a)

with

f (x)|Sβ = a2(k1+ k2)/B +
(
x − xc

β

)
3, (2.7b)

G= (G(1),G(2),G(3)) is the symmetric Green tensor,a=ao/L is the nondimensional non-
deformed radius,k1(x) andk2(x) are the dimensionless principal surface curvatures, and
xc
β is the surface centroid

xc
β =

1

Sβ

∫
Sβ

x dS. (2.8)



544 ZINCHENKO AND DAVIS

It is inconvenient that the kernelτ (k)(x− y), as follows from the derivation of (2.6), is
not triply periodic, but contains a linearly growing part from the pressureq(k). The kernel
τ (k) in (2.6) could be changed to the periodic kernel

τ̃ (k)(x− y) = τ (k)(x− y)− (x − y)k I (2.9)

by simply adding a suitable vector constant tov(x), using the identities

2
∫

Sβ

τ̃ (k)(x− y) · n(x) dSx =
{
(1− 2Vβ) ek, y ∈ ST

β

−2Vβek, y outsideST
β ,

(2.10)

whereVβ is the volume of dropβ, and ST
β stands for all periodic images ofSβ . As for

the standard, free-space case [1], the eigenvalues of the integral operator with the kernel
2τ̃ (k) can be shown to lie within [−1, 1]; however, the eigenfunctions are different (see
(2.10)). To avoid complications with Wielandt’s deflation of the extreme eigenvalues±1
(necessary to speed up the convergence of the iterative solution), one can still consider (2.6)
in the subspace ofv(x) with zero fluxes through everySα. In this subspace, the RHS of
(2.6) is a periodic operator, the eigenfunctions forκ = 1 are standard arbitrary rigid-body
motions, and−1 is no longer an eigenvalue for the adjoint. After the standard Wielandt
deflation [1, 48] in this space,τ (k)(x− y) can be replaced by the more convenient ˜τ (k)(x− y)
using (2.9). Besides the deflation, it is important to reduce the change of the integrands on
drop surfaces, like we did in (2.7b), in order to accelerate convergence in the multipole
part (Section 3) of the algorithm; for the velocities, this goal is achieved by considering
fluctuations from the average values. Thus, we proceed from (2.6) to an equivalent, deflated
system of equations for

w(y) = v(y)− κ v̂(y), (2.11)

where the hat stands for the rigid-body projection (see below),

w(y) = u(y)− n(y)
Sα

∫
Sα

u · n dS, y ∈ Sα, (2.12a)

u(y) = κ
[

2
N∑
β=1

∫
Sβ

Q(x) · τ̃ (x− y) · n(x) dSx − ŵ(y)+〈w〉α

− 2
N∑
β=1

〈w〉βVβ + 2
N∑
β=1

∫
Sβ

(w · n)(x− xc
β

)
dS

]
+ F(y). (2.12b)

Here,

〈w〉β = 1

Sβ

∫
Sβ

wdS, Q(x)|Sβ = w(x)− 〈w〉β, (2.13)

and the tensor ˜τ ={τ (k)i j } is now symmetric in all three indices (see Subsection 3.4). A
convenient expression [2] for the rigid-body projectionsv̂ andŵ can be used, for example,

ŵ(y)|Sα = 〈w〉α + B× (y− xc
α

)
, (2.14)
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where the vectorB= (B1, B2, B3) is calculated from the solution of a 3× 3 system:

Di j Bj =
∫

Sα

w(x) · [ei ×
(
x− xc

α

)]
dS, i = 1, 2, 3, (2.15)

with the positive-definite matrix

Di j =
∫

Sα

[
δi j
(
x− xc

α

)2− (x − xc
α

)
i

(
x − xc

α

)
j

]
dS. (2.16)

Oncew is determined from (2.12), the velocityv can be recovered:

v= w+ κŵ/(1− κ). (2.17)

In addition to (2.12), we have developed a more straightforward deflation scheme, using
directly the eigenfunctions for the kernel 2 ˜τ (x− y) with eigenvalues±1 which can be
derived from (2.10). The two schemes gave practically identical results in tests (which is
expected, since they are equivalent in the limit of fine triangulations), but (2.12) is preferred
for its simplicity.

Equation (2.12) is solved at each time step by the simplest method of successive sub-
stitutions, and the drop surfaces are updated by the second-order Runge–Kutta time in-
tegration scheme, with an artificial tangential velocity added to prevent mesh distortion
(Subsection 5.1). For extreme (λ¿ 1 orλÀ 1) viscosity ratios and high volume fractions,
when drops are close, successive substitutions are poorly convergent, and alternative, bi-
conjugate gradient iterations (as discussed at some length by Zinchenkoet al.[2]) would be
much preferable. This alternative requires, however, the adjoint of the discrete form of the
boundary-integral operator (2.12), which is straightforward to calculate for standard point-
to-point summations, but more difficult when the combined boundary-integral-multipole
scheme (Section 3) of the present work is used. We have chosen the simplest iterative
method not to overcomplicate the code logic at this stage, leaving the most difficult case
of extremeλ at high volume fractions for further investigation. For the same reason, only
the conventional form (2.7) of the inhomogeneous term is used in the present work. A new
curvatureless form [3] may be a preferable option for many drops at larger deformations.

Since the emulsion, on average, is at rest(〈v〉=0), the instantaneous sedimentation rate
vS is the average velocity over the drop phase. By the Gauss theorem, calculation ofvS is
reduced to surface integrals,

vS = 1

c

N∑
α=1

∫
Sα

(v · n)(x− xc
α

)
dS, (2.18)

wherec is the volume fraction of the drop phase.
The central part of our method is an efficient calculation of the boundary-integrals for the

inhomogenous (2.7a) and double-layer (2.12b) terms. A standard, point-to-point boundary-
integral method has anO(N2M2) computational cost, whereM is the number of collocation
points per drop, thus heavily restricting dynamical simulations to smallN, even with the
fastest calculation of Green’s functions by suitable interpolations. The method described
below is a certain hybrid of the boundary-integral and economical multipole techniques
and follows in many ways the procedure developed for thermal/electrostatical interaction
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of many spheres by Zinchenko [16], with extensive use of Wigner functions and economical
truncation of multipole expansions to optimize near-field summations.

3. FAST ALGORITHM FOR THE BOUNDARY-INTEGRAL OPERATORS

3.1. General Scheme

Let every drop surfaceSα (α= 1, . . . N) be represented by an unstructured grid of flat
triangles (Fig. 2) withM verticesx j (called thereafter the collocation nodes). For any
smooth integrandϕ(x) on Sα, a simple trapezoidal rule can be used, with reassigning
triangle contributions to vertices (a procedure due to Rallison [30], who used it in one-drop
calculations), ∫

Sα

ϕ(x) dS≈
∑

x j∈Sα

ϕ(x j )4Sj , (3.1)

where

4Sj = 1

3

∑
4S (3.2)

and the summation is over all triangle areas4Swith vertexx j . Pozrikidis and co-workers
[49] developed an alternative approach to surface discretization in terms of quadratic bound-
ary elements with six nodes. Using quadratic elements is preferable for smooth solutions due
to a higher rate of convergence, although the number of operations per element is increased
several fold compared to (3.1). Flat triangle formulation, however, is expected to be more
robust in extreme cases when high-curvature zones or near contacts between neighboring
drops are formed (which are typical of our simulations in Section 6). We are not aware of

FIG. 2. The calcualtion of near-field interactions. AssumingBγ |Bδ andy′ |Bγ , the contributions of blockBγ
to the boundary integrals fory, y′ andy′′ are evaluated, respectively, by (i) reexpansion of Lamb’s singular series
from xo

γ to xo
δ , (ii) pointwise calculation of Lamb’s singular series, and (iii) direct point-to-point summation.
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3D boundary-integral solutions with quadratic elements for such extreme cases, and so a
detailed comparison between the two approaches cannot be made at present.

To calculate “self-interactions,” i.e., the contributions of the surfaceSα 3 y to single (2.7a)
and double-layer (2.12b) boundary integrals for collocation nodesy, we subtract out the
free-space contributions from the periodic Stokeslet and stresslet (cf. [16]),

G(r) = G0(r)+G1(r), τ̃ (r) = τ 0(r)+ τ 1(r), (3.3a)

G0(r) = − 1

8π

(
I
r
+ rr

r 3

)
, τ 0(r) = 3

4π

rrr
r 5
. (3.3b)

Upon substitutions ofG0 andτ 0 into self-integrals, singularity subtraction is made, so that∫
Sα

f (x)G(x− y) · n(x) dSx ≈
∑

x j∈Sα

G1(x j − y) ·W(x j ) (3.4a)

+
∑

x j∈Sα,x j 6=y

[ f (x j )− f (y)]G0(x j − y) · n(x j )4Sj (3.4b)

and

2
∫

Sα

Q(x) · τ̃ (x− y) · n(x) dSx ≈ Q(y) (3.5a)

+
∑

x j∈Sα

Q(x j ) · τ 1(x j − y) ·W(x j ) (3.5b)

+
∑

x j∈Sα,x j 6=y

[Q(x j )−Q(y)] · τ 0(x j − y) ·W(x j ). (3.5c)

In (3.4)–(3.5) and in what follows, the weightsW(x j ) are

W(x j ) = f (x j )n(x j )4Sj (3.6)

for the single-layer calculations and

W(x j ) = 2n(x j )4Sj (3.7)

for the double-layer calculations. Terms (3.4b) and (3.5c) are handled by direct summations
(obviously, an economical way being to consider pairs (xi , x j ) with i < j only and accumu-
late contributions to the integrals fory= xi andy= x j simultaneously). The contributions of
G1 andτ 1 to (3.4) and (3.5), called “far-field” contributions, are economically calculated by
Taylor double series in powers of(xj − xc

α)k and(y− xc
α)l . These expansions are generated

to an arbitrary order (Subsection 3.4). The numberN of drops with centroidsxc
α ∈ [0, 1)3

is assumed to be not too small, so that the minimal spherical shell aroundSα centered atxc
α

has the radiusdα < 1/2, and the far-field expansion is convergent. For moderateN, many
terms may be required, while for largeN only a few terms suffice. The algorithm contains
an additional parameterε, which controls the truncation of this and other Taylor or mul-
tipole expansions (Subsection 3.5). The precision parameterε is not a deviation from the
standardO(N2M2) non-multipole solution in a rigorous sense, but it does correlate with
this deviation (Section 6). The relation betweenε and M is found by trials, to make the
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error due to truncation typically negligible compared to the triangulation error (Section 6);
asε→ 0, all terms of the Taylor expansions are eventually included.

A far more involved scheme is used to calculate the boundary-integral contributions
of surfacesSβ Õ y. Whenx and y in (2.7a) and (2.12b) are close, the kernelsG(x− y)
andτ̃ (x− y) are nearly singular, invalidating a straightforward use of the trapezoidal rule
(3.1). Near-singularity subtraction [5] would suggest subtractingf (x∗) and Q(x∗) from
f (x) andQ(x), respectively, wherex∗ is the collocation node onSβ or its periodic image,
which is closest toy. This simple procedure is suitable and greatly improves the integrands
for the free-space case [31], but it overlooks an additional term for the double-layer in a
periodic system (important at large volume fractions), because the integral identities (2.10)
are different from the free-space case. (This difference was not taken into account in [5],
which made (2.3) therein not equivalent to the original boundary-integral formulation for
λ 6= 1. This might have a small effect on the calculations in [5], sinceλ 6= 1 was considered
only for c= 10%.) Besides, it is not easy to reconcile near-singularity subtractions, made
in a point-to-point manner in our algorithm, with multipole expansions. Obviously, these
subtractions are meaningful only for close pairs (x, y), and using them for all pairs would
considerably slow down the algorithm without necessity.

With these considerations in mind, the single-layer (2.7a) and double-layer (2.12b) inte-
grals overSβ 6= Sα 3 y are approximated as∫

Sβ

f (x)G(x− y) · n(x) dSx ≈
∑

x j∈Sβ

G(x j − y) ·W(x j ) (3.8a)

−
∑
kαβ

2(kαβ, y) f (x∗)
∑

x j∈Sβ

G0(x j + kαβ − y) · n(x j )4Sj (3.8b)

and

2
∫

Sβ

Q(x) · τ̃ (x− y) · n(x) dSx ≈
∑

x j∈Sβ

Q(x j ) · τ̃ (x j − y) ·W(x j ) (3.9a)

−
∑
kαβ

2(kαβ, y)Q(x∗)
∑

x j∈Sβ

τ 0(x j + kαβ − y) ·W(x j ). (3.9b)

The summations in (3.8b) and (3.9b) are over all integer vectorskαβ with ‖xc
β + kαβ − xc

α‖<
dα + dβ + ho, whereho is the threshold parameter normally set to 0.3a. The nodex∗ ∈ Sβ
minimizes‖x j + kαβ − y‖, and

2(kαβ, y) = max

{
1− ‖y− x∗ − kαβ‖2

h2
o

, 0

}
. (3.10)

According to (3.10), near-singularity subtractions are in effect only when the distance
from y to a periodic image ofSβ (calculated as the node-to-node minimum) is less than
ho. For ‖y− x∗ − kαβ‖¿ ho,2 is close to unity, and the addends in (3.8b) and (3.9b)
effectively cancel near-singular behavior of the addends in (3.8a) and (3.9a). At the same
time, according to the integral identities forG0 andτ 0, (3.8b) and (3.9b) disappear for
fine triangulations. Gradual transition of2 to zero, as‖y− x∗ − kαβ‖→ ho, serves the
smoothness of the near-singularity subtraction. Our most recent experiments, not included
in Section 6, show that an additional smoothing of2, to make2∈C1, slightly improves
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the convergence of the velocity iterations. In a large system, only a few values ofβ can
contribute to (3.8b) and (3.9b), and only one image ofSβ , namely the one which minimizes
the centroid-to-centroid distance fromSα, has to be considered. For smallN (but still large
enough to provide at least several-fold advantage of our code over standard boundary-
integral techniques), more than one image ofSβ can contribute to (3.8b) and (3.9b). The
simplest search ofβ andkαβ contributing to (3.8b) and (3.9b) is fast, and the nodesy are
limited by‖y− xc

β − kαβ‖< dβ + ho, and so the near-singularity subtractions have a small
O(M2N) computational cost in the present applications, even with largeN (Section 6).

Multipole expansions are used to handle (3.8a) and (3.9a), which would be most efficient
for nearly spherical drops, since such an expansion at the drop center converges everywhere
outside the minimal spherical shell around the drop. For strongly deformable drops at high
volume fractions, however, these minimal shells considerably overlap, thus limiting the use
of multipole expansions (see below). To increase the robustness of calculating (3.8a) and
(3.9a), we first slice all drops into compact blocksB1, . . .BNB (NB ≥ N). The simplest way
to do it is to cut every dropSα into[

lα

(
2π lα
3Vα

)1/2

− 1

]
(3.11)

pieces by planes orthogonal to the line of maximum elongation with equal spacing (Fig. 2),
where lα is the drop diameter(=max(‖xi − x j ‖, xi , x j ∈ Sα) and the brackets in (3.11)
represent the greatest integer function; if a drop is compact, it coincides with its only block.
We identify each blockBγ with the set of collocation nodes in it and construct a minimal
spherical shellDγ aroundBγ with a centerxo

γ and radiusdo
γ . Exact determination ofxo

γ

anddo
γ would be too costly; a simple, stochastic procedure with sufficient accuracy is used

instead (Appendix A). If a dropSβ consists of a single blockBγ , the block shell centerxo
γ

is not necessarily the surface centroid (2.8), and the radiusdo
γ 6= dβ , in general. To avoid

confusion, we will reserve lettersγ andδ to index the quantities related to blocks, while
indicesα andβ will be used for entire drops.

The calculations of (3.8a) and (3.9a) follow the same logic, and we will only consider
the single-layer sum (3.8a) herein; technical details about the differences between (3.8a)
and (3.9a) can be found in Subsections 3.2–3.5. First, the free-space contribution of every
blockBγ (γ = 1, 2, . . . NB) is expanded in Lamb’s singular form [32], i.e.,

∑
x j∈Bγ

G0(x j − y) ·W(x j ) =
∞∑
ν=1

[
∇ × (Rγ χ−(ν+1))+∇8−(ν+1)

− (ν − 2)R2
γ∇ p−(ν+1)

2ν(2ν − 1)
+ (ν + 1)p−(ν+1)Rγ

ν(2ν − 1)

]
. (3.12)

Here, the differential operations are with respect toRγ = y− xo
γ , and the negative-order

solid harmonics are

p−(ν+1)(Rγ ) =
ν∑

m=−ν
A(γ )−(ν+1),m

(
do
γ

Rγ

)ν+1

Yν,m(Rγ ), (3.13a)

8−(ν+1)(Rγ ) =
ν∑

m=−ν
B(γ )−(ν+1),m

(
do
γ

Rγ

)ν+1

Yν,m(Rγ ), (3.13b)
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χ−(ν+1)(Rγ ) =
ν∑

m=−ν
C(γ )

−(ν+1),m

(
do
γ

Rγ

)ν+1

Yν,m(Rγ ), (3.13c)

A(γ )−(ν+1),−m = (−1)mĀ(γ )−(ν+1),m, B(γ )−(ν+1),−m = (−1)mB̄(γ )−(ν+1),m etc., (3.13d)

whereYν,m(r) is the standard normalized spherical harmonic [33]

Yν,m(r) =
[
(2ν + 1)(ν −m)!

4π(ν +m)!

]1/2

Pm
ν (cosθ) eimϕ (m≥ 0) (3.14a)

Yν,m(r) = (−1)mȲν,−m(r) (m≤ 0) (3.14b)

for a vectorr= (r sinθ cosϕ, r sinθ sinϕ, r cosθ), Pm
ν is the associated Legendre function

(in the notation of [33, 34]), and the overbar denotes complex conjugation. The coefficients
A(γ )−(ν+1),m, B(γ )−(ν+1),m, andC(γ )

−(ν+1),m, (called hereafter “singular near-field moments”) are
truncated byν ≤ ν−max+ 1, with the truncation boundν−max(γ, ε) determined as discussed
below. These moments are precalculated for all blocks by a fast, rotation-based algorithm of
Subsection 3.2, before handling the sums (3.8a). Also precalculated are a sufficient number
of “far-field moments”

D(γ )
ν,m,k = (−1)ν

∑
x j∈Bγ

Zν,m
(
x j − xo

γ

)
Wk(x j ), |m| ≤ ν, (3.15a)

E(γ )
ν,m,k,l = (−1)ν

∑
x j∈Bγ

Zν,m
(
x j − xo

γ

)
Wk(x j )

(
xj − xo

γ

)
l , |m| ≤ ν (3.15b)

for every blockBγ (the truncation bounds for (3.15) are discussed below). The functions
Zν,m(r) are denormalized solid harmonics,

Zν,m(r) = 2π1/2r νYν,m(r)
[(2ν + 1)(ν −m)!(ν +m)!] 1/2

, (3.16)

convenient in the analysis of the far-field (Subsection 3.4). Now, to calculate the sum (3.8a)
for y∈Bδ ⊂ Sα, each blockBγ of the surfaceSβ 6= Sα is temporarily shifted periodically to
minimize the center-to-center distance‖xo

γ − xo
δ‖ (the necessary integer displacements may

be different for different blocksBγ ⊂ Sβ). We still denote here the objects associated with
the shifted block byx j , xo

γ , Dγ and use the splitting (3.3) ofG(x j − y) into the free-space
G0(x j − y) and far-fieldG1(x j − y) parts. IfDδ ∩Dγ =∅, the free-space contribution of
blockBγ to the sum (3.8a) can be evaluated aty∈Bδ by first reexpanding (3.12) atxo

δ in
Lamb’s regular form [32]

∞∑
n=1

[
∇ × (Rδχn)+∇8n + (n+ 3)R2

δ∇ pn

2(n+ 1)(2n+ 3)
− npnRδ
(n+ 1)(2n+ 3)

]
, (3.17)

where the differentiations are with respect toRδ = y− xo
δ , and the positive-order solid

harmonics are of the forms

pn(Rδ) =
n∑

m=−n

An,m

(
Rδ
do
δ

)n

Yn,m(Rδ), An,−m = (−1)mĀn,m, (3.18a)
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8n(Rδ) =
n∑

m=−n

Bn,m

(
Rδ
do
δ

)n

Yn,m(Rδ), Bn,−m = (−1)mB̄n,m, (3.18b)

χn(Rδ) =
n∑

m=−n

Cn,m

(
Rδ
do
δ

)n

Yn,m(Rδ), Cn,−m = (−1)mC̄n,m. (3.18c)

Generally, the larger the gap betweenDδ andDγ , the fewer terms both in (3.12) and (3.17)
suffice for this reexpansion. For a given precisionε, close-to-optimum truncation bounds
νnf(δ, γ ) andnnf(δ, γ ) are constructed (Subsection 3.5), to limit the reexpansion from (3.12)
to (3.17) byν ≤ νnf+ 1 andn≤ nnf+ 1. When‖xo

δ − xo
γ ‖À max(do

δ , d
o
γ ), the boundsνnf

andnnf approach 3 (this limitation being imposed to ensure absolute convergence of remote
block contributions in the “thermodynamical” limitN→∞, as discussed in Subsection
3.5), whileνnf, nnf→∞ for ‖xo

δ − xo
γ ‖→do

δ + do
γ or ε→ 0. The reexpansion from (3.12)

to (3.17) is divergent for overlapping shellsDδ andDγ and is also avoided for a small
clearance betweenDδ andDγ because of slow convergence. Our code has a thresholdko

(optimal values being≤O(M1/2), as found experimentally in Section 6). The shifted block
Bγ is called “sufficiently separated” from blockBδ (which is denoted byBγ |Bδ), if their
shellsDδ andDγ have enough clearance, so thatνnf(δ, γ )≤ ko andnnf(δ, γ )≤ ko. Note that
the relationBγ |Bδ may be asymmetric and also depends onko andε; asko→∞, every
Bγ with Dδ ∩Dγ =∅ becomes sufficiently separated fromBδ. Reexpansion from (3.12) to
(3.17) is performed only forBγ |Bδ using a fastO(ν3

nf, n
3
nf)-algorithm of Subsection 3.3

with Wigner functions, and the coefficientsAn,m, Bn,m andCn,m in (3.18) are accumulated
as the contributions from all blocksBγ with Bγ |Bδ. It is advantageous that the boundsνnf

andnnf are small, except for close pairs(Bδ,Bγ ).
Before pointwise calculation of the cumulative series (3.17) for all collocation nodes

y∈Bδ, (3.17) is transformed to a more efficient form

1

2
Rδ

∞∑
n=1

pn(Rδ)+
∞∑

n=0

n∑
m=−n

Hn,m

(
Rδ
do
δ

)n

Yn,m(Rδ). (3.19)

The vector coefficientsHn,m are expressed in terms of cumulative harmonic coefficients
Ak,µ, Bk,µ, andCk,µ in (3.18) by recurrent relations for spherical harmonics (Appendix B).
Using (3.19) in place of (3.17) greatly reduces the number of operations. The truncation
bound for (3.19) is

n ≤ max
γ :Bγ |Bδ

nnf(δ, γ )+ 1, (3.20)

which is typicallyn≤ ko+ 1, except for low-concentrated systems.
If a shifted blockBγ is not sufficiently separated fromBδ, the LHS of (3.12) is calculated

for y∈Bδ either as Lamb’s singular series (3.12), or by standard point-to-point summa-
tions. To this end, another economical boundν∗nf(y, γ ) is constructed (Subsection 3.5), to
limit the summation in the RHS of (3.12) (and in (3.21) below) byν ≤ ν∗nf(y, γ )+ 1 for
‖y− xo

γ ‖> do
γ . If y is “well outside”Dγ for a given precisionε (which is denoted byy |Bγ ),

so thatν∗nf(y, γ )≤ ko, Lamb’s series (3.12) is used. The latter operation is considerably
optimized by transforming the RHS of (3.12) to

1

2
Rγ

∞∑
ν=1

p−(ν+1)(Rγ )+
∞∑
ν=0

ν∑
m=−ν

Fν,m

(
do
γ

Rγ

)ν+1

Yν,m(Rγ ). (3.21)
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The vector coefficientsFν,m for ν ≤ ν−max(γ, ε)+ 1 are calculated viaA(γ )−(k+1),µ, B(γ )−(k+1),µ,

andC(γ )

−(k+1),µ (Appendix B) for every blockBγ , before the search is made forBδ andy∈Bδ
for which (3.21) is necessary; there is no need, therefore, to store the coefficientsFν,m for
all blocksBγ simultaneously. Only in the rare cases, wheny is insideDγ , or is outside but
too close toDγ , so thatν∗nf(y, γ )> ko, should we use standard point-to-point summations
(3.12).

The above scheme for near-field interactions also sets the limitν−max+ 1 onν in (3.12)–
(3.13) for a given precision. In particular,

ν−max(γ ) = max

{
max
δ:Bγ |Bδ

νnf(δ, γ ), max
y:ν∗nf≤ko

ν∗nf(y, γ )
}
, (3.22)

which is typicallyν−max= ko, except for at low concentrations.
The far-field contribution of the shifted blockBγ , i.e., the LHS of (3.12) withG1(x j − y)

instead ofGo(x j − y), can be evaluated aty∈Bδ using a special form of Taylor double
series in powers ofx j − xo

γ andy− xo
δ for Stokes flows,

∑
x j∈Bγ

Wk(x j )(G1)kl(x j − y) =
∞∑

n=0

n∑
m=−n

Zn,m
(
y− xo

δ

){ ∞∑
ν=0

ν∑
µ=−ν

D(γ )
ν,µ,kLm+µ

n+ν,k,l

+ (y− xo
δ + xo

δ − xo
γ

)
l D

(γ )
ν,µ,k Mm+µ

n+ν,k − E(γ )
ν,µ,k,l M

m+µ
n+ν,k

}
.

(3.23)

The detailed form of (3.23) is given in Subsection 3.4, the coefficientsLm
n,k,l and Mm

n,k

being related to high-order derivatives of(G1)kl(r) and the associated pressureq(k)1 (r) at
r= xo

δ − xo
γ . The numberN of drops in the cell is assumed to be not too small, so that

ζδγ =
[
1− 2max

{∣∣xo
δ −xo

γ

∣∣
1,
∣∣xo
δ − xo

γ

∣∣
2,
∣∣xo
δ − xo

γ

∣∣
3

}+ (xo
δ − xo

γ

)2
]1/2

> do
δ + do

γ . (3.24)

The condition (3.24) guarantees that the shellDδ does not overlap any periodic images of
Dγ , except possiblyDγ itself (recall that|xo

δ − xo
γ |k≤ 1/2 is assumed), and so the series

(3.23) is convergent. Moreover, for large systems (N ≥O(100)), the convergence of (3.23)
is fast, and typically only low-order terms suffice. Three more truncation bounds are con-
structed (Subsection 3.5),νff(δ, γ ),nff(δ, γ ), andν∗ff(δ, γ ), to limit the summation in (3.23)
by

ν ≤ νff, n ≤ nff, ν + n ≤ ν∗ff, (3.25)

for a given precisionε. The form (3.23) is used to accumulate contributions from all blocks
Bγ ⊄ Sα 3 y, with Lm+µ

n+ν,k,l and Mm+µ
n+ν,k calculated by the tables of high-order derivatives

of G1-related functions (Subsection 3.5). The cumulative expression, as a function of
Rδ, has the same structure as (3.19) for the near field, and the two are combined be-
fore fast pointwise calculations for all collocation nodesy∈Bδ are made. The truncations
(3.25) also set the limit onν in precalculating far-field moments (3.15) for every block
Bγ .

Our far-field scheme is clearlyO(N2)-intensive, but the coefficient beforeN2 for NÀ 1
is very small, since forNÀ 1 the boundsνff, nff, and ν∗ff are O(1) and are practically
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independent ofM ; in the present applications, the total cost is strongly dominated by near-
field interactions between close blocks, even for quite large systems. For this reason, more
involved schemes [12, 19] for remote interactions designed to eliminateO(N2) scaling
were not incorporated in our algorithm.

Partitioning of elongated drops into compact blocks is particularly helpful in the far-field
part for moderately largeN. Without this option, the convergence of (3.23) may be much
slower, and we had difficulties in tabulating a sufficient number of high-order derivatives
of G1-related functions. For self-interactions, however, partitioning into blocks is not used,
since these derivatives are required only atr= 0, and can be calculated to high order in case
of slow convergence.

The following Subsections 3.2–3.5 elaborate on the multipole details of our code. Addi-
tional aspects of the algorithm are discussed in Sections 4 and 5.

3.2. Fast Calculation of Singular Near-Field Moments

A large portion of the total computational load is spent on generating (3.12)–(3.13) and,
whenλ 6= 1, similar expansions for the double-layer,

∑
x j∈Bγ

Q(x j ) ·τ 0(x j −y) ·W(x j ) =
∞∑
ν=1

[
∇×(Rγ χ̃−(ν+1)

)+∇8̃−(ν+1)

− (ν−2)R2
γ∇ p̃−(ν+ 1)

2ν(2ν−1)
+ (ν+1) p̃−(ν+ 1)Rγ

ν(2ν−1)

]
+∇8̃−1,

(3.26)

on every iteration. The harmonics̃p−(ν+1), 8̃−(ν+1), and χ̃−(ν+1) have the form (3.13a)–
(3.13c), withÃ(γ )−(ν+1),m, etc., instead of̃A(γ )−(ν+1),m, etc.; the source term∇8̃−1 is absent for
the single layer (3.12). This task is a particular case of translation of Stokes singularities,
and the general relations of Sangani and Mo [11] could be used for this purpose. However,
an alternative, rotation-based technique is used herein, since it considerably reduces the
number of operations in generating (3.12) and (3.26), and greatly simplifies the algebra.
The idea of our approach is to generate the expansions

G0(x j − y) ·W(x j )

=
∞∑
ν=1

[
∇ × (Rγ χ( j )

−(ν+1)

)+∇8( j )
−(ν+1) −

(ν − 2)R2
γ∇ p( j )

−(ν+1)

2ν(2ν − 1)
+ (ν + 1)p( j )

−(ν+1)Rγ
ν(2ν − 1)

]
(3.27)

or

Q(x j ) · τ 0(x j − y) ·W(x j ) =
∞∑
ν=1

[
∇ × (Rγ χ̃ ( j )

−(ν+1)

)+∇8̃( j )
−(ν+1)

− (ν − 2)R2
γ∇ p̃( j )

−(ν+1)

2ν(2ν − 1)
+ (ν + 1) p̃( j )

−(ν+1)Rγ
ν(2ν − 1)

]
+∇8̃( j )

−1

(3.28)

for a single nodex j , using a preferred, “intrinsic” coordinate system (x′1, x′2, x′3) with the
x′3-axis alongρ= x j − xo

γ (Fig. 3), then transform harmonicsp( j )
−(ν+1)(Rγ ),8

( j )
−(ν+1)(Rγ ),
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FIG. 3. The rotation-based scheme for calculating near-field moments.

andχ( j )
−(ν+1)(Rγ ) (or p̃( j )

−(ν+1), 8̃
( j )
−(ν+1), andχ̃ ( j )

−(ν+1)) into the old coordinates (x1, x2, x3) (the
same for allx j ), and accumulate contributions from all nodesx j ∈Bγ in this manner. This
procedure is reminiscent of using rotational transformations in conductivity simulations
[16, 17]. An intrinsic coordinate system is not unique, but the freedom of rotation about the
x′3-axis does not affect the result.

In deriving (3.27)–(3.28) in the intrinsic coordinates, we omit primes and identifyW(x j ),

Q(x j ), andRγ = y− xo
γ with W,Q, andR, respectively, for brevity. The pressurep( j )(y)

associated with the Stokesletω(y)=G0(x j − y) ·W is

p( j )(y) = 1

4π
W · ∇y

(
1

r

)
, r = y− x j . (3.29)

The addition theorem for spherical harmonics greatly simplifies in the intrinsic coordinates:

1

r
=
∞∑

n=0

(
4π

2n+ 1

)1/2 Yn,0(R)
Rn+1

ρn. (3.30)

Using the well-known relations

(D ± i D2)
Yn,m(R)

Rn+1
= ∓

[
(2n+ 1)(n±m+ 1)(n±m+ 2)

2n+ 3

]1/2 Yn+1,m±1(R)
Rn+2

,

(3.31)

D3
Yn,m(R)

Rn+1
= −

[
(2n+ 1)(n−m+ 1)(n+m+ 1)

2n+ 3

]1/2 Yn+1,m(R)
Rn+2

(whereDi = ∂/∂Ri is the Cartesian partial derivative) atm= 0 and differentiating (3.30),
the pressure (3.29) can be expanded into spherical harmonics,

p( j )(y)=
∞∑
ν=1

p( j )
−(ν+1)(R) =

∞∑
n=1

ρn−1

4[π(2n+ 1)]1/2Rn+1

{
[n(n+ 1)]1/2[(W1+ iW2)Yn,−1(R)

− (W1− iW2)Yn,1(R)]− 2nW3Yn,0(R)
}
, (3.32)
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which immediately gives the coefficientsA( j )
−(ν+1),m in

p( j )
−(ν+1)(R) =

1∑
m=−1

A( j )
−(ν+1),m

(
do
γ

R

)ν+1

Yν,m(R). (3.33)

To find8( j )
−(ν+1)(R), we use the general relation [32]

ω(y) · R=
∞∑
ν=1

[
(ν + 1)

2(2ν − 1)
R2 p( j )

−(ν+1) − (ν + 1)8( j )
−(ν+1)

]
. (3.34)

By (3.3b), the LHS of (3.34) can be written as

− 1

8π

[
(W · R)

(
1

r
− R · ∇y

1

r

)
+ (W · ρ)R · ∇y

1

r

]
. (3.35)

To expand (3.35) into spherical harmonics, additional recurrent relations are needed:

(R1± i R2)Yn,m(R)
R

= ±
[
(n±m+ 1)(n±m+ 2)

(2n+ 1)(2n+ 3)

]1/2

Yn+1,m±1(R)

∓
[
(n∓m− 1)(n∓m)

(2n+ 1)(2n− 1)

]1/2

Yn−1,m±1(R), (3.36a)

R3

R
Yn,m(R) =

[
(n−m+ 1)(n+m+ 1)

(2n+ 1)(2n+ 3)

]1/2

Yn+1,m(R)

+
[
(n−m)(n+m)

(2n− 1)(2n+ 1)

]1/2

Yn−1,m(R). (3.36b)

Substituting (3.30) into (3.35), and using the homogenity of solid harmonics [32] and
(3.36) atm= 0, one obtains

ω(y) · R =
∞∑

n=1

(n+ 3)ρn+1

8(2n+ 3)[π(2n+ 1)]1/2Rn+1

×{[n(n+ 1)]1/2[(W1− iW2)Yn,1(R)− (W1+ iW2)Yn,−1(R)]

− 2(n+ 1)W3Yn,0(R)
}+ ∞∑

n=1

(n+ 1)(W · ρ) ρn

4[π(2n+ 1)]1/2

Yn,0(R)
Rn+1

+ · · · , (3.37)

where we have omitted the terms of the typeR2 times a solid harmonic of negative order
(those terms matchR2 p( j )

−(ν+1)-terms in (3.34) and would only be needed to determine

p( j )
−(ν+1) already provided by (3.32)). Comparing the8-part of (3.34) with (3.37) gives the

coefficientsB( j )
−(ν+1),m in

8
( j )
−(ν+1)(R) =

1∑
m=−1

B( j )
−(ν+1),m

(
do
γ

R

)ν+1

Yν,m(R). (3.38)
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The calculation ofχ( j )
−(ν+1) is even simpler, through the relation [32]

[∇ × ω(y)] · R=
∞∑

n=1

n(n+ 1)χ( j )
−(n+1). (3.39)

As follows from (3.3b),

[∇ × ω(y)] · R= − 1

4π
W ·

(
R×∇y

1

r

)
. (3.40)

Substituting (3.30) into (3.40) and using the relations

(R2D3− R3D2)
Yn,m(R)

Rn+1
= − i

2Rn+1

{
[(n−m)(n+m+ 1)]1/2Yn,m+1(R)

+ [(n−m+ 1)(n+m)]1/2Yn,m−1(R)
}
,

(R3D1− R1D3)
Yn,m(R)

Rn+1
= 1

2Rn+1

{− [(n−m)(n+m+ 1)]1/2Yn,m+1(R) (3.41)

+ [(n−m+ 1)(n+m)]1/2Yn,m−1(R)
}
,

(R1D2− R2D1)
Yn,m(R)

Rn+1
= im

Rn+1
Yn,m(R)

atm= 0 allows us to represent [∇ ×ω(y)] · R as

∞∑
n=1

[
n(n+ 1)

π(2n+ 1)

]1/2
ρn

4Rn+1
[(iW1+W2)Yn,1(R)+ (iW1−W2)Yn,−1(R)]. (3.42)

Comparing (3.39) and (3.42) gives the coefficientsC( j )
−(ν+1),m in

χ
( j )
−(ν+1)(R) =

∑
m=−1,1

C( j )
−(ν+1),m

(
do
γ

R

)ν+1

Yν,m(R). (3.43)

To expand the stressletΨ(y)=Q · τ 0(x j − y) ·W in the form (3.28), we switch to the
weights (3.7) and generate (3.27) first for the Stokesletω(y)=G0(x j − y) ·W, as described
above. Since∇2Ψ(y)=−∇[2Q · ∇ p( j )(y)], the pressurẽp( j )(y)=−2Q · ∇ p( j )(y) associ-
ated withΨ(y) is easily expanded into spherical harmonics, using (3.33) and (3.31), which
gives the coefficients̃A( j )

−(ν+1),m in

p̃( j )
−(ν+1)(R) =

2∑
m=−2

Ã( j )
−(ν+1),m

(
do
γ

R

)ν+1

Yν,m(R). (3.44)

To find 8̃( j )
−(ν+1)(R), we use again the property [32]

Ψ(y) · R=
∞∑
ν=0

[
(ν + 1)

2(2ν − 1)
R2 p̃( j )

−(ν+1) − (ν + 1)8̃( j )
−(ν+1)

] (
p̃( j )
−1 = p̃( j )

−2 = 0
)
. (3.45)

Note thatΨ(y) · R=−RQ · τ R, whereτ R is the stress vector on the sphere of radiusR
centered atxo

γ for the Stokesletω(y). Sinceω(y) is expanded in Lamb’s form (3.27), a
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ready expression forτ R can be used [32], resulting in

Ψ(y) · R = Q ·
∞∑

n=1

[
(n+ 2)∇χ( j )

−(n+1) × R+ 2(n+ 2)∇8( j )
−(n+1)

+ (2n2+ 1)Rp( j )
−(n+1)

n(2n− 1)
− (n+ 1)(n− 1)R2∇ p( j )

−(n+1)

n(2n− 1)

]
. (3.46)

Substituting (3.33), (3.38), and (3.43) into (3.46), and using the relations (3.41), (3.31),
and (3.36) allows us to represent (3.46) in the form (3.45) and calculate the coefficients
B̃( j )
−(ν+1),m in

8̃
( j )
−(ν+1)(R) =

2∑
m=−2

B̃( j )
−(ν+1),m

(
do
γ

R

)ν+1

Yν,m(R). (3.47)

The coefficientsC̃( j )
−(ν+1),m are determined from (3.39), withΨ(y) andχ̃ ( j )

−(n+1) in place

of ω(y) andχ( j )
−(n+1), respectively. Using

Ψ(y) = p( j )(y)Q−∇[ω(y) ·Q] − (Q∇)ω(y), (3.48)

one can derive

(∇ ×Ψ) · R= −Q · (∇ p( j ) × R
)−Q · ∇[(∇ × ω) · R] +Q · (∇ × ω). (3.49)

Sinceω(y) is expanded as Lamb’s series (3.27), a convenient expression [11] can be used:

∇ × ω(y) =
∞∑

n=1

[
−n∇χ( j )

−(n+1) −
1

n
R×∇ p( j )

−(n+1)

]
. (3.50)

Substituting (3.50) into (3.49) and using (3.39) gives a compact relation:

∞∑
ν=1

ν(ν+1)χ̃ ( j )
−(ν+1) = −

∞∑
n=1

[
(n− 1)

n
Q·(∇ p( j )

−(n+1)×R
)+n(n+2)Q·∇χ( j )

−(n+1)

]
. (3.51)

Finally, by (3.33), (3.43), and the recurrent relations (3.31), (3.41), the RHS of (3.51) is
expanded into spherical harmonics, which gives the coefficientsC̃( j )

−(ν+1),m in

χ̃
( j )
−(ν+1)(R) =

2∑
m=−2

C̃( j )
−(ν+1),m

(
do
γ

R

)ν+1

Yν,m(R). (3.52)

It remains to subject the sparse matricesA( j )
−(ν+1),m, Ã( j )

−(ν+1),m, B( j )
−(ν+1),m, B̃( j )

−(ν+1),m,

C( j )
−(ν+1),m, andC̃( j )

−(ν+1),m to rotational transformation into the original coordinate system
(more detail on this operation is given in Subsection 3.3) and accumulate contributions from
all nodesx j ∈Bγ in this manner, to obtain singular near-field momentsA(γ )−(ν+1),m, Ã(γ )−(ν+1),m,
etc. Although this rotation-based technique still has anO[(ν−max)

2|Bγ |] computational cost
(where|Bγ | is the number of nodesx j ∈Bγ ), it reduces the number of operations com-
pared to direct singularity translations, besides greatly simplifying the algebra. Our fully
optimized rotation-based routine takes 2.9× 10−7(ν−max)

2|Bγ | and 4.3× 10−7(ν−max)
2|Bγ |

seconds of CPU time to generate the single-layer (3.12) and double-layer (3.26) expan-
sions, respectively, forν−maxÀ 1 on a DEC 500au workstation. These times are 2.3-fold and
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2.8-fold faster than for the optimized routine without rotations which we used for compar-
isons. On the other hand, when solving the Laplace equation in a multiparticle system by a
similar hybrid of multipole and boundary-integral techniques, it would not be advantageous
to use rotations for calculating singular near-field moments.

3.3. Fast Algorithm for Regular Near-Field Moments

Another principal task, as outlined in Subsection 3.1, is to accumulate Lamb’s singular
contributions (3.12) or (3.26) from all blocksBγ |Bδ and represent the result as Lamb’s reg-
ular expansion (3.17)–(3.18) centered atxo

δ . Our code in this part closely follows the idea of
the “rotational algorithm for the near-field operator” in conductivity simulations [16], with
substantial use of Wigner functions. Namely, a temporary, “axial” basis (x′1, x′2, x′3) is intro-
duced for blocksBδ andBγ , with thex′3-axis along the center-to-center vectorRδγ = xo

γ−xo
δ

(Fig. 4). The harmonicsp−(ν+1), 8−(ν+1), andχ−(ν+1), or p̃−(ν+1), 8̃−(ν+1), andχ̃−(ν+1) in
Lamb’s singular expansions (3.12) or (3.26) for blockBγ are first transformed into the coor-
dinates(x′1, x′2, x′3) by Wigner functions (see below), then (3.12) or (3.26) is reexpanded at
xo
δ as Lamb’s regular series (3.17), the harmonicspn,8n, andχn are transformed back to the

original basis (x1, x2, x3) and the contributions from all blocksBγ with Bγ |Bδ are added,
to produce the cumulative near-field momentsAn,m, Bn,m, andCn,m. Most importantly, the
computational cost of eachBγ→Bδ reexpansion in this scheme isO(ν3

nf, n
3
nf), compared

to O(ν4
nf, n

4
nf) for direct reexpansion without rotations. For Laplace interactions, Zinchenko

[16] found 3-fold and 6-fold advantages of this scheme over the direct reexpansions at
νnf= nnf= 10 andνnf= nnf= 20, respectively. For the Stokes problems, even much greater
gains are expected.

FIG. 4. The rotation-based scheme for block-to-block reexpansions.
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The rotation from the original(x1, x2, x3) to the new(x′1, x′2, x′3) basis is a sequence of
two transformations: (i) rotation about thex3-axis of angleχδγ and (ii) rotation about the
newx1-axis of angle9δγ , where

exp(iχδγ) = −(X2+ i X1)/
(
X2

1 + X2
2

)1/2
, 0≤ χδγ < 2π,

(3.53)
η = cos9δγ = X3/Rδγ , 0≤ 9δγ < π,

andRδγ = (X1, X2, X3) in the original coordinates (in the degenerate caseX1 = X2 = 0,
the value ofχδγ is arbitrary). The third Euler angle can be set to zero. Let(r ′, θ ′, ϕ′) be
spherical coordinates associated with(x′1, x′2, x′3). It follows from the theory of Wigner
functions [33] that

Yν,m(θ, ϕ) =
∑
|m′|≤ν

exp(imχδγ )P
ν
m,m′(9δγ )Yν,m′(θ

′, ϕ′), (3.54a)

Yν,m′(θ
′, ϕ′) =

∑
|m|≤ν

(−1)m+m′ exp(−imχδγ )P
ν
m′,m(9δγ )Yν,m(θ, ϕ). (3.54b)

The relations (3.54) allow us to transform harmonic coefficients from(x1, x2, x3) to
(x′1, x′2, x′3) and back, if the complex coefficientsPν

m,m′ are known. These coefficients obey

Pν
m,m′ = Pν

m′,m, Pν
m,m′ = Pν

−m,−m′ (3.55)

and are related to Jacobi polynomials [33], which give different recurrent schemes. Memory
limitations do not allow all necessaryP-coefficients to be stored, and they are instead
calculated on every iteration, with a small additional cost. The fastest way, as noted by
Zinchenko [16], is to introduce realX-coefficients,

Pν
m,m′ = i |m

′|−m(cν,m′/cν,m)X
ν
m,m′ , |m′| ≤ m≤ ν, (3.56)

where

cν,m = 1

2ν

[
(2ν)!

(ν −m)!(ν +m)!

]1/2

, (3.57)

and use the recurrent scheme

X0
0,0 = 1, Xν

ν,±ν =
η ± 1

2
Xν−1
ν−1,±(ν−1) (for ν ≥ 1), (3.58a)

Xν
ν,m′ =

1

2
sin9δγ Xν−1

ν−1,m′ (for |m′| ≤ ν − 1), (3.58b)

Xν
m,m′ =

1

ν −m

[
(νη −m′)Xν−1

m,m′ − ν sin9δγ Xν−1
m+1,m′

]
(for |m′| ≤ m≤ ν − 1)

(3.58c)

(omitting the last term in (3.58c) form= ν − 1). Relation (3.58c) was observed to lose
stability [17], but not untilν exceeds 100–115 in double-precision calculations. An alter-
native, slightly slower scheme was found to be absolutely stable [17]. However, since the
maximum values ofν in the present work were about 20 (Section 6), the fastest scheme
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(3.58c) could be used safely. Rotational transformations of harmonic coefficients between
(x1, x2, x3) and(x′1, x′2, x′3) are further expedited by (28)–(29) of Zinchenko [16].

It remains to discuss how to reexpand Lamb’s singular form (3.12) or (3.26) for block
Bγ as a regular series (3.17) atxo

δ , with the harmonics written in the axial basis(x′1, x′2, x′3).
It appears that reexpansion relations from Lamb’s singular to regular forms have been
independently rederived by several authors. Happel and Brenner [32] considered this trans-
formation, but used coordinate systems with polar axesθ = 0 normal to the translation
vector, which made the relations too cumbersome and noneconomical. Mo and Sangani
[35] developed a more attractive formalism, not limited to a particular choice of coordinate
systems, but without using the advantages of axial coordinates. Earlier, Zinchenko [36, 37]
gave compact reexpansion formulae in the axial coordinates, but only for azimuthal numbers
m= 1 and 2. Below, we generalize the relations [36, 37] for arbitrary azimuthal numbers,
with a short and simple derivation following the logic of [36]; alternatively, the general, but
not simple relations of Mo and Sangani (Appendix I of [35]) could be applied in the axial
coordinates for a free-space case to reach the same goal. The transitions from (3.12) and
(3.26) to (3.17) are the same, and we only consider (3.12), with the summation rangeν ≥ 0
and p−1=χ−1= 0, to cover both the single-layer and double-layer cases.

Assuming thatA(γ )−(ν+1),m, B(γ )−(ν+1),m, andC(γ )

−(ν+1),m have been transformed to the axial
basis(x′1, x′2, x′3), primes are omitted in the following calculations using these coordinates.
The generalized addition theorem for spherical harmonics (e.g., [38]) greatly simplifies in
the axial coordinates,(

do
γ

Rγ

)ν+1

Yν,m(Rγ ) =
∞∑

n=|m|
0m
ν,n

(
ρ

do
δ

)n

Yn,m(ρ), (3.59)

where

0m
ν,n = (−1)ν+m

[
2ν + 1

2n+ 1

]1/2 cν,mcn,mcn+ν,n−ν
2cn+ν,0

(
2

Rδγ

)ν+n+1(
do
δ

)n(
do
γ

)ν+1
(3.60)

and, for brevity,Rδ = y− xo
δ =ρ. The relation (3.59) immediately givesAn,m for theBγ→

Bδ contribution:

An,m =
∞∑

ν=|m|
0m
ν,n A(γ )−(ν+1),m. (3.61)

To findCn,m, we dot the curl of (3.12) withρ, yielding

∞∑
n=1

n(n+ 1)χn(ρ)

=
∞∑
ν=1

{
−1

ν
Rδγ

∂p−(ν+1)

∂ϕ
+ ρ ∂

∂ρ

[
χ−(ν+1) + ρ ∂χ−(ν+1)

∂ρ
− Rδγ · ∇χ−(ν+1)

]}
. (3.62)

Here, the partial derivatives are taken in the spherical coordinates(ρ, θ, ϕ) associated
with the axial coordinate system centered atxo

δ . The harmonics (3.13a)p−(ν+1)(Rγ ) and
(3.13c)χ−(ν+1)(Rγ ) are expanded nearxo

δ by (3.59), and theRδγ · ∇-term in (3.62) is then
handled by the relation

D3ρ
nYn,m(ρ) =

[
(2n+ 1)(n−m)(n+m)

2n− 1

]1/2

ρn−1Yn−1,m(ρ), (3.63)
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whereD3 = ∂/∂ρ3 is the Cartesian partial derivative. This procedure gives

Cn,m = − im Rδγ
n(n+ 1)

∞∑
ν=|m|

1

ν
0m
ν,n A(γ )−(ν+1),m +

∞∑
ν=|m|

0m
ν,nC(γ )

−(ν+1),m

− Rδγ
(n+ 1)do

δ

[
(2n+ 3)(n−m+ 1)(n+m+ 1)

2n+ 1

]1/2 ∞∑
ν=|m|

0m
ν,n+1C(γ )

−(ν+1),m (3.64)

(omittingν= 0 form= 0). For calculatingBn,m, we dot the velocity (3.12) withρ, to obtain

∞∑
n=1

[
nρ2 pn

2(2n+ 3)
+ n8n

]

=
∞∑
ν=0

ρ
∂8−(ν+1)

∂ρ
− Rδγ

∞∑
ν=1

∂χ−(ν+1)

∂ϕ
+
∞∑
ν=1

[
(ν + 1)

ν(2ν − 1)

(
ρ2− Rδγ ρ3

)
p−(ν+1)

− (ν − 2)ρ

2ν(2ν − 1)

(
ρ2+ R2

δγ − 2Rδγ ρ3
)∂p−(ν+1)

∂ρ

]
, (3.65)

whereρ3 is the Cartesian component in the axial basis and, again, the partial derivatives
are taken in the associated spherical coordinates(ρ, θ, ϕ) centered atxo

δ . Expanding the
harmonics (3.13) by (3.59) in terms ofρ, and using the recurrent relation (3.36b), one can
obtain from (3.65)

Bn,m = − im

n
Rδγ

∞∑
ν=|m|

0m
ν,nC(γ )

−(ν+1),m +
∞∑

ν=|m|
0m
ν,nB(γ )−(ν+1),m

− R2
δγ

∞∑
ν=|m|

(ν − 2)

2ν(2ν − 1)
0m
ν,n A(γ )−(ν+1),m +

Rδγdo
δ

n

[
(n−m)(n+m)

(2n− 1)(2n+ 1)

]1/2

×
∞∑

ν=|m|

[(n− 1)(ν − 2)− (ν + 1)]

ν(2ν − 1)
0m
ν,n−1A(γ )−(ν+1),m (3.66)

(omittingν= 0 in the last two sums form= 0). The transformation relations from̃A(γ )−(ν+1),m,
etc., toAn,m, etc., are identical to (3.61), (3.64), and (3.66).

Our optimized routine based on this simple, axial form of reexpansion relations and
rotational techniques (see above) is quite fast. For example, withνnf= nnfÀ 1, it takes only
1.4× 10−7ν3

nf seconds of CPU time on a DEC 500au workstation to reexpand (3.12) or
(3.26) into (3.17) for oneBγ .

3.4. The Far-Field Part

Our approach to calculating the far-field part of the boundary-integral operators is based
on the special form of the Taylor expansion for a harmonic functionf (x),

f (x) =
∞∑
ν=0

ν∑
µ=−ν

∂ν,µ f (x)|x=0Zν,µ(x), ∂ν,µ = (D1− i D2)
µDν−|µ|

3 , (3.67)
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whereDi = ∂/∂xi is the Cartesian partial derivative,(D1− i D2)
µ = (−1)µ(D1+ i D2)

−µ

for µ<0, andZν,µ(x) is the special solid harmonic (3.16). The expansion (3.67) directly
follows from Lemma (B.1) of Zinchenko [17] and is also equivalent to (27) of Sangani and
Mo [11].

Another useful observation is thatv(x)− 1
2 p(x)x is a harmonic vector field, if(v(x), p(x))

are the Stokes velocity and associated pressure, respectively, with unit viscosity(v(x)may
be compressible, only∇2v= ∇ p and∇2 p = 0 must hold). It is convenient to introduce a
harmonic field(gkl 6= glk)

gkl(r) = (G1)kl(r)− 1

2
q(k)1 (r)rl , (3.68)

whereq(k)1 (r) is the pressure associated with the Stokes velocity((G1)k1, (G1)k2, (G1)k3),
and apply (3.67) to bothgkl andq(k)1 . Using the symmetryg(−r)= g(r),q(k)1 (−r)=−q(k)1 (r),
one obtains ∑

x j∈Bγ
Wk(x j )(G1)kl(x j − y)

=
∞∑
ν=0

ν∑
µ=−ν

D(γ )
ν,µ,k∂ν,µgkl

(
y− xo

γ

)− 1

2

∞∑
ν=0

ν∑
µ=−ν

[
E(γ )
ν,µ,k,l

+ (xo
γ − y)l D

(γ )
ν,µ,k

]
∂ν,µq(k)1

(
y− xo

γ

)
, (3.69)

whereD(γ )
ν,µ,k and E(γ )

ν,µ,k,l are the far-field moments (3.15). The high-order derivatives in
(3.69), as harmonic functions ofy, can be expanded aty= xo

δ by (3.67), leading to∑
x j∈Bγ

Wk(x j )(G1)kl(x j − y)

=
∞∑

n=0

n∑
m=−n

Zn,m(Rδ)

{ ∞∑
ν=0

ν∑
µ=−ν

[
D(γ )
ν,µ,k∂n+ν,m+µgkl(Rγ δ)

− 1

2
E(γ )
ν,µ,k,l ∂n+ν,m+µq(k)1 (Rγ δ)+ 1

2
(Rγ δ)l D

(γ )
ν,µ,k∂n+ν,m+µq(k)1 (Rγ δ)

]}

+ 1

2
(Rδ)l

∞∑
n=0

n∑
m=−n

Zn,m(Rδ)
∞∑
ν=0

ν∑
µ=−ν

D(γ )
ν,µ,k∂n+ν,m+µq(k)1 (Rγ δ), (3.70)

with Rγ δ = xo
δ − xo

γ . The expansion (3.70) is a detailed form of (3.23) and, as a function of
Rδ = y− xo

δ , has the same structure as (3.19) (recall (3.16)).
The far-field expansion for the double-layer contribution can be obtained in the same

manner:∑
x j∈Bγ

Qs(x j )(τ1)ksl(x j − y)Wk(x j )

=
∞∑

n=0

n∑
m=−n

Zn,m(Rδ)

{ ∞∑
ν=0

ν∑
µ=−ν

[
D̃(γ )
ν,µ,k,s∂n+ν,m+µtksl(Rγ δ)
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+ 1

2
Ẽ(γ )
ν,µ,k,s,l ∂n+ν,m+µq̃(ks)

1 (Rγ δ)+ 1

2
(Rγ δ)l D̃

(γ )
ν,µ,k,s∂n+ν,m+µq̃(ks)

1 (Rγ δ)
]}

+ 1

2
(Rδ)l

∞∑
n=0

n∑
m=−n

Zn,m(Rδ)
∞∑
ν=0

ν∑
µ=−ν

D̃(γ )
ν,µ,k,s∂n+ν,m+µq̃(ks)

1 (Rγ δ). (3.71)

Here,q̃(ks)
1 (r) is the pressure associated with the (compressible) Stokesian velocity((τ1)ks1,

(τ1)ks2, (τ1)ks3)(r) (so thatq̃(sk)
1 (r)= q̃(ks)

1 (r)= q̃(ks)
1 (−r)), and

tksl(r) = (τ1)ksl(r)− 1

2
q̃(ks)

1 (r)rl (3.72)

is an auxiliary harmonic field, withtksl(r)= tskl(r)=−tksl(−r). The double-layer far-field
moments

D̃(γ )
ν,µ,k,s = (−1)ν−1

∑
x j∈Bγ

W(s(x j )Qk)(x j )Zν,µ
(
x j − xo

γ

)
, (3.73a)

Ẽ(γ )
ν,µ,k,s,l = (−1)ν

∑
x j∈Bγ

(
xj − xo

γ

)
l
W(s(x j )Qk)(x j )Zν,µ

(
x j − xo

γ

)
(3.73b)

(whereW(sQk)= 1
2(WsQk+Wk Qs) is the symmetrization in indicess andk) are precal-

culated for all blocksBγ on every iteration, before the sums (3.71) are calculated.
Sanganiet al. [39] and Zinchenko [16] developed different formalisms to calculate nec-

essary high-order derivatives of the periodic Green’s function for Laplace interactions. The
computation of high-order derivatives in (3.70) and (3.71) is slightly more complex. We start
from Ewald-like forms forG1={(G1)kl} and associated pressuresq1= (q(1)1 ,q(2)1 ,q(3)1 ),

G1(x) = I
4π
+ 1

4π3/2

∫ π1/2

0
e−t2x2

[I + 2t2xx] dt

− 1

4π3/2

∑
k

′
∫ ∞
π1/2

e−t2(x−k)2[I + 2t2(x− k)(x− k)] dt

− 1

4π2

∑
k

′
[
I − πkk

(
1+ 1

πk2

)]
e−πk2−2π i k·x

k2 , (3.74a)

q1(x) = −x+ x
π3/2

∫ π1/2

0
e−t2x2

t2 dt − 1

π3/2

∑
k

′(x− k)
∫ ∞
π1/2

e−t2(x−k)2t2 dt

− i

2π

∑
k

′ ke−πk2−2π i k·x

k2 , (3.74b)

where the summation
∑′ is over all integer vectorsk= (k1, k2, k3) 6= 0. The average of

G1+G0 over the cellV = [0, 1)3 is zero, as required in Section 2. One way to derive (3.74)
is to use Hasimoto’s expressions [27] forG(x) and∇q(x) for a special lattice considered
herein and then subtract the free-space contributionsG0(x)andq0(x). Beenakker’s approach
[28], although popular, gives slower convergent series (by a factor ofO(k2) for each term
both in the real and reciprocal spaces); besides, (3.74a), (3.74b) are much simpler and more
amenable for calculating high-order derivatives.
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According to (3.68) and (3.74),

gsl(x)= δsl

4π3/2

∫ π1/2

0
e−t2x2

dt− 1

4π3/2

∑
k

′∫ ∞
π1/2

e−t2(x−k)2[δsl−2t2(xs−ks)kl
]

dt+ · · · ,

(3.75)

where only the integral (real-space) contributions are shown (the other terms are easy to
differentiate). Generalizing (58) of Zinchenko [16], we have(

∂

∂y1
− i

∂

∂y2

)µ(
∂

∂y3

)ν−µ[
Zn,m(y)

∫ ∞
π1/2

t2pe−t2y2
dt

]

= π1/2

2p+1

∑
s,l

(−1)ν+s+l (ν − µ)!µ!(y1− iy2)
µ−s

l !(ν − µ− l )!s!(µ− s)!
Jµ−s+p
ν−l−s+p(y)Zn−s−l ,m−s(y) (3.76)

for 0≤µ≤ ν, |m| ≤n, where the summation is over all integerss, l with

0≤ s ≤ µ, 0≤ l ≤ min(ν − µ, n−m), 2s+ l ≤ n+m, (3.77)

and

Jµν (y) =
2µ+1

π1/2

∫ ∞
π1/2

tν+µHν−µ(y3t)e−t2y2
dt, (3.78)

with Hn(ξ) being the Hermite polynomial [33, 34]. Relations (3.76)–(3.78) also hold for
the integrals over [0, π1/2], and efficient recurrent schemes [16] can be used for calculat-
ing Jµν in both cases. Sincexs− ks is a combination of harmonicsZ1,m(x− k), relations
(3.76) for p= n= 1 andp= n= 0, together with (3.16), (3.74)–(3.75), suffice for a simple
computation of∂ν,µg(x) and∂ν,µq1(x) to an arbitrary order.

Ewald-like forms for the stresslet(τ1)ksl and associated pressuresq̃(ks)
1 are not required,

since∂ν,µtksl(x) and∂ν,µq̃(ks)
1 (x) are simply expressed via∂ν ′,µ′g and∂ν ′,µ′q1(x). Indeed,

with a suitable choice of an additive constant,q̃(ks)
1 (x)= 2∂q(s)1 (x)/∂xk (cf. with Subsec-

tion 3.2), and harmonicity ofq(s)1 implies

∂ν,µq̃(1,s)1 = (∂ν+1,µ+1− ∂ν+1,µ−1)q
(s)
1 , ∂ν,µq̃(2,s)1 = i (∂ν+1,µ+1+ ∂ν+1,µ−1)q

(s)
1 ,

(3.79)
∂ν,µq̃(3,s)1 = 2∂ν+1,µq(s)1 .

Besides, it follows from (2.2), (2.9), (3.68), (3.72) and the symmetry ofq̃1 that

tksl(x) = −q(l )1 δks+ 1

2
q(s)1 δkl + 1

2
q(k)1 δsl + Dkgsl + Dsgkl − δksxl . (3.80)

Sinceg(x) is harmonic, the same algebra as in (3.79) allows us to express∂ν,µtksl via∂ν+1,µ′g
and∂ν,µq1.

Our fast calculation of the derivatives in (3.70) and (3.71) at each time step is based on
a precalculated table of∂n,mgkl(x) and∂n,mq(k)1 (x) (with 0≤m≤ n andk≤ l ) on a mesh
x= (n1h, n2h, n3h), whereh= 0.5/NT , the integersni are in the range 0≤ n1≤ n2≤ NT ,
0≤ n3≤ NT , and NT is typically about 20; the maximum order depends on the system
size. For a givenRγ δ ∈ [− 1

2,
1
2)

3, the nearest nodexo= (no
1h, no

2h, no
3h) (with |no

i | ≤ NT ) is

found, and∂n,mgkl (for k≤ l andk> l ) and∂n,mq(k)1 are calculated at this node based on
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the table and symmetries ofG1 andq1 (see (3.74)). For (3.70),∂n,mg(Rγ δ) and∂n,mq1(Rγ δ)
are then computed as second-order or third-order Taylor expansions atxo by (3.67), for
example,

∂n,mg(Rγ δ) =
∑
ν≤2 or 3

ν∑
µ=−ν

∂n+ν,m+µg(xo)Zν,µ(Rγ δ − xo) (3.81)

(which is more appropriate than the simplest linear interpolation, since∂n,mg(x)and∂n,mq1(x)
are slowly varying in the range|xi | ≤1/2 only for very smalln). For (3.71),∂n,mt(Rγ δ) and
∂n,mq̃1(Rγ δ) are expressed via∂n′,m′g(Rγ δ) and∂n′,m′q1(Rγ δ). To cover all the simulations
and more demanding tests in Section 6,∂n,mg and∂n,mq1 were tabulated up ton= 20 on a
mesh withNT = 20, although medium-precision dynamical simulations forN> 100 typi-
cally require much smaller values ofn. The single-precision format was found sufficient for
extensive tables of∂n,mg and∂n,mq1, while double precision is used in the rest of the code.
For typical truncation boundsνff= nff, ν

∗
ff = 0.7(νff + nff) in (3.25), it takes our algorithm

about 5× 10−7(νff + 1)4 seconds of CPU time on a DEC 500au workstation to calculate
the coefficients beforeZn,m(Rδ) andRδZn,m(Rδ) for (3.71), and half as much for the single-
layer case (3.70). With the quadratic Taylor approximation (see above), additional operations
on calculating the derivatives in (3.70) or (3.71) slow down the far-field part by 22 to 45%
for typicalνff, nff from 7 to 4, respectively.

The far-field part of self-interactions (Subsection 3.1) is a particular case of the considered
scheme, whenBγ constitutes a whole drop andRγ δ = 0 in (3.70)–(3.71).

3.5. Economical Truncation Bounds

Unlike in the other parts of our code, there is a considerable freedom in constructing the
truncation boundsνnf, nnf, ν

∗
nf, νff, nff, andν∗ff (Subsection 3.1) of multipole expansions for a

given precisionε. In principle, any choice of these bounds, such thatνnf, nnf, etc.→∞ (if
unrestricted byko) for ε→ 0, is allowed, since this condition alone guarantees the conver-
gence to the standard, nonmultipole boundary-integral solution for a given triangulation.
However, an unreasonable,ad hocchoice of the bounds (especially, uniformνnf, nnf, ν

∗
nf)

can greatly reduce the performance. Most importantly, only the interaction of low-order
multipoles is long-ranged, and so optimal near-field truncation bounds should be strongly
sensitive to mutual geometry of the blocks. Rigorous majorants for multipole coefficients
are problematic, especially forλ 6= 1, and they would probably greatly overestimate the ac-
tual truncation errors. Instead, our approach is based, in part, on some plausible arguments
about the behavior of multipole coefficients.

We start from determining the boundsνnf + 1 andnnf + 1 on ν andn, respectively, in
the reexpansion from (3.12) to (3.17) assumingDδ ∩ Dγ =∅. For a fixed direction of
Rγ = y− xo

γ , (3.12) can be viewed as a Taylor expansion,

∑
x j∈Bγ

G0(x j − y) ·W(x j ) =
∞∑

k=0

ak

(
do
γ

Rγ

)k+1

, (3.82)

convergent forRγ > do
γ . The asymptotic behavior of|ak| for kÀ 1 is related to the behavior

of the LHS of (3.82) aty→ x j ∗ , wherex j ∗ ∈Bγ is the node with|x j ∗ − xo
γ | =do

γ . For a
continuous distribution of Stokeslets, the single-layer gradient is finite at internal points
of a surface and only logarithmically singular at the edge, so an approximate behavior
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ak=O(k−3) is assumed for moderately largek. At k→∞, however,ak=O(1) due to the
discrete structure of the LHS of (3.82), with a pole singularity aty= x j ∗ . The following
model of|ak| is assumed forall k:

|ak| =
{

Cγ /(k+ 1)3, k < kcr

Cγ /(kcr+ 1)3, k ≥ kcr.
(3.83)

Numerical experiments suggest the switch value

kcr = 2do
γ (4Sj ∗)

−1/2, (3.84)

where4Sj is given by (3.2). The constantCγ is estimated by consideringk= 0 in (3.82):

Cγ = 1

4πdo
γ

∥∥∥∥∥ ∑
x j∈Bγ

W(x j )

∥∥∥∥∥. (3.85)

SinceRγ ≥ Rδγ − do
δ for y∈Bδ, the series (3.82) is majorated by a double series:

∞∑
k=0

∞∑
n=0

9n,k, 9n,k = |ak| (k+ n)!

k!n!

(
do
δ

Rδγ

)n( do
γ

Rδγ

)k+1

. (3.86)

Obviously, (3.86) mimics the reexpansion from Lamb’s singular (3.12) to regular (3.17)
forms. The boundsνnf(δ, γ ) andnnf(δ, γ ) are such that the remainder of the sum (3.86) is
within a prescribed tolerance:∑

n,k:n>nnf ork>νnf

9n,k<ε1, ε1 =
enfR

−4
δγ ε∑

γ R−4
δγ

. (3.87)

The summation in the RHS of (3.87) is over all blocksBγ 6⊂ Sα(where Sα is the drop
containingBδ) andenf=O(1) is a numerical factor found experimentally;R−4

δγ is chosen as
the simplest function integrable at infinity in<3 (cf. [16]). The form (3.87) forε1 guarantees
that the sum of the omitted contributions fromall Bγ to (3.86) is less thanenfε.

We first findνnf from

∞∑
n=0

∞∑
k=νnf+1

9n,k =
( ∞∑

k=0

−
νnf∑

k=0

)
|ak|
(

do
γ

Rδγ − do
δ

)k+1

<
ε1

2
(3.88)

(see region A in Fig. 5.) This task is easy, since the first sum in the RHS of (3.88) is known
explicitly through (3.83). The boundnnf is then determined from

∞∑
n=nnf+1

νnf∑
k=0

9n,k =
νnf∑

k=0

|ak|
(

do
γ

Rδγ − do
δ

)k+1

−
nnf∑

n=0

νnf∑
k=0

9n,k <
ε1

2
(3.89)

(see region B in Fig. 5). Inequalities (3.88)–(3.89) imply (3.87). Ifνnf> ko, or nnf> ko, or
Rδγ < do

γ + do
δ , the boundν∗nf + 1 onν is used instead for pointwise calculation of (3.12)

for y∈Bδ, Rγ > do
γ . This bound is simply determined from

∞∑
k=0

|ak|
(

do
γ

Rγ

)k+1

−
ν∗nf∑

k=0

|ak|
(

do
γ

Rγ

)k+1

< ε1. (3.90)
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FIG. 5. The determination of near-field truncation bounds.

A very similar technique is used to limit the summations byν ≤ ν̃nf + 1 andn≤ ñnf + 1 in
the double-layer reexpansion from (3.26) to (3.17), and also to find the bound ˜ν∗nf(y, γ )+1
on ν for pointwise calculation of (3.26) in case ˜νnf> ko, or ñnf> ko, orDδ ∩ Dγ 6= ∅. The
RHS of (3.26) is estimated as

∞∑
k=1

ãk

(
do
γ

Rγ

)k+1

, |ãk| =
{

C̃γ /k2, k < kcr

C̃γ k/k3
cr, k ≥ kcr.

(3.91)

The switch valuekcr is still given by (3.84). The form (3.91) vs (3.83) reflects a higher
double-layer singularity. The constantC̃γ is estimated as

C̃γ = 3

4π
(
do
γ

)2

∥∥∥∥∥ ∑
x j∈Bγ

Q(x j )W(x j )

∥∥∥∥∥ (3.92)

(Euclidean norm is used for the matrix (3.92)). All the relations (3.86)–(3.90) hold for
determining ˜νnf, ñnf, and ν̃∗nf; only k= 0 is excluded from the summations. Besides,ε1

differs from (3.87) by a factor of 2̃enf/|λ − 1| instead ofenf, whereẽnf=O(1) is another
coefficient determined experimentally; the presence of 2/|λ − 1| serves to balance the
truncation errors for the inhomogeneous and double-layer terms in (2.12b).

For the far-field, we note that the terms in the RHS series (3.23) withn+ ν ≥ 3 could be
evaluated as ifG1(x j −y)was a formal sum of free-space contributionsG0(x j −y) from all
periodic replicas ofBγ , excludingBγ itself (cf. [16]). Although this partition is not used in
our calculations, it gives a way of constructing the far-field truncation boundsνff, nff, ν

∗
ff (see

(3.25)) and similar bounds ˜νff, ñff, ν̃
∗
ff for (3.71) by slightly modifying the above arguments.

Namely,νff + 1 is found as the first value ofk≥ 3 satisfying

∞∑
n=0

9n,k = |ak|
(

do
γ

ζδγ − do
δ

)k+1

<
ε2

(k+ 1)2
, (3.93)

whereζδγ =min‖Rδγ +m‖ (m 6= 0 is an arbitrary integer vector) given by (3.24) is the
minimum of center-to-center distances fromDδ to periodic images ofDγ excludingDγ
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itself,9n,k for the far-field bounds differs from (3.86) inζδγ instead ofRδγ , and only the
upper form (3.83) for|ak| is used due to fast convergence of far-field expansions. The
toleranceε2 is

ε2 = 6

π2

effζ
−4
δγ ε∑

γ

∑
m 6= 0 ‖Rδγ +m‖−4

, (3.94)

whereeff=O(1) is another numerical factor. As in (3.87), the summation in (3.94) is over
all blocksBγ 6⊂ Sα ⊃Bδ, and the estimate 23.5± 7 for the inner sum (3.94) suffices. For
every 0≤ k≤ νff, the first value ofn∗ with k+ n∗ ≥ 2 and

∞∑
n=n∗+1

9n,k <
ε2

(k+ 1)2
(3.95)

is found, andnff andν∗ff are calculated as max(n∗(k)) and max(n∗(k)+ k), respectively; the
limitation ν∗ff onν+n expedites (3.70), but a similar limitation for the near-field part would
be inconvenient. The form (3.94) is designed to make the sum of the omitted contributions
from all Bγ to the RHS of (3.70) less thaneffε, with our estimate (3.83), (3.85) for the
moments. Only minor changes to (3.93)–(3.95) are used to limit the far-field double-layer
expansion (3.71) byν ≤ ν̃ff, n≤ ñff, andν + n≤ ν̃∗ff . Namely,eff in (3.94) is replaced by
2ẽff/|λ− 1|, whereẽff=O(1) is one more numerical factor, and, using the upper form
(3.91) for|ãk|, the value of ˜νff is determined from

C̃γ

[
do
γ

/(
ζδγ − do

δ

)]ν̃ff+3
<ε2, ν̃ff ≥ 1. (3.96)

Next, for every 1≤ k≤ ν̃ff + 1, the first value ofn∗ with k+ n∗ ≥ 2 and

C̃γ

∞∑
n=n∗+1

(n+ k)!

k!n!

(
do
δ

ζδγ

)n( do
γ

ζδγ

)k+1

< ε2 (3.97)

is found, and̃nff andν̃∗ff are calculated as max(n∗(k)) and max(n∗(k)+ k− 1).
Finally, it was convenient to consider the far-field truncation boundsνff, . . . ν̃

∗
ff for self-

interactions (Subsection 3.1) as a particular case of the above schemes, when the summations
(3.82), (3.85), and (3.92) are over the entire drop surfaceSα, do

γ anddo
δ are set to the radius

dα of the minimal shell aroundSα centered atxc
α, ζδγ = 1, and the double sum in (3.94) is

replaced by 33, twice the value of the inner sum (3.94) atRδγ = 0.
The double-layer truncation bounds are calculated on every iteration at the initial moment

t = 0, and only on the first iteration att > 0, when the preceding time step gives an initial
approximation forQ(x j ). In all cases, the cost of truncation-bound calculations is negli-
gible. After some experimenting, we fixedenf= 1, eff= 10, ẽnf= 0.2, ẽff= 2. With chosen
enf, eff, ẽnf, ẽff, our truncation scheme depends on a single parameterε, and all multipoles
are eventually included, asε→ 0, if unrestricted (for the near-field) by the thresholdko.

4. BEST PARABOLOID-SPLINE METHOD FOR NORMALS AND CURVATURES

To calculate the mean curvaturek(xi )= 1
2(k1 + k2) and outward unit normaln(xi )= ni

at a nodexi of a triangulated drop surfaceSα, we have developed a novel method called
BPS (“best paraboloid-spline”) herein. For an arbitrary vectorn, consider a local coordinate
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FIG. 6. Schematic for the calculation of the normal vectors and mean curvatures by the best paraboloid-spline
method (BPS).

system(x′, y′, z′) centered atxi and with thez′-axis alongn (Fig. 6). Let(x′i j , y′i j , z
′
i j ) be

the(x′, y′, z′) coordinates of vectorsxi j = x j − xi from xi to adjacent nodesx j , and

5i (n) = min
C,D,E

∑
x j∈Ai

(
Cx′2i j + Dx′i j y′i j + Ey′2i j − z′i j

)2

‖xi j ‖2 , (4.1)

where the summation is over the setAi of nodesx j adjacent toxi . The minimum (4.1) is
found by a simple solution of a linear system forC, D, andE, and is independent of an
arbitrary rotation of(x′, y′, z′) about thez′-axis. Obviously,5i (n) is a measure of local
deviation ofSα from the best paraboloidz′ =Cx′ 2+ Dx′y′ + Ez′ 2 with the givenz′-axis,
and5i (n)=O(h4), if n is the exact normal atxi andh is the characteristic mesh size. Also,
[xi j · (ni + n j )]2/‖xi j ‖2=O(h4) for mesh edgesxi j and exact normalsni , n j . Based on
these observations, in the BPS method the set of normals{ni } on Sα is found to provide a
global minimum to the function

8 =
∑
xi∈Sα

5i (ni )+ cs

∑
xi j

[xi j · (ni + n j )]2

‖xi j ‖2 (4.2)

under the constraintsn2
i = 1, where the first sum is over all mesh verticesxi ∈ Sα, the second

sum is over all mesh edgesxi j on Sα (with i < j to avoid double counting), andcs=O(1) is
a numerical coefficient. Forcs= 0, the normalsni would be decoupled and BPS equivalent
[3] to the local best-paraboloid technique [2]. The second term (4.2) of spline character is
prompted by the curvatureless formulation [2, 3] and interlinks the normalsni over the entire
surface. Given an initial approximation to{ni }, all the normalsni on Sα are successively
updated by local minimizations of (4.2) with respect to oneni ; these cycles (outer iterations)
are repeated until allni stabilize to withinδ1= 10−4–10−5.

Inner iterations are required to minimize (4.2) with respect to oneni . A gradient method
is the simplest,

n(ν+1)
i = P/‖P‖, P= n(ν)i − δ∇‖8,

(4.3)

∇8 = ∇5i
(
n(ν)i

)+ 2cs

∑
x j∈Ai

[
xi j ·

(
n(ν)i + n j

)]
xi j

‖xi j ‖2 ,

wheren(ν)i is theνth inner iteration and‖ means the projection on the plane orthogonal to
nνi ; the small parameterδ is fixed at 0.05. The calculation of∇‖5i necessary for (4.3) is
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described in [3] as a part of another method. Iterations (4.3) terminate once‖∇‖8‖<δ2¿ δ1

(with δ2= 10−5–10−6). An alternative, more efficient for a poor initial approximation, is to
make one iteration (4.3) fromn(0)i to n(1)i and generate two additional pointsn(2)i andn(3)i on
the unit sphere, so thatn(0)i , n

(2)
i , n

(3)
i form an equilateral spherical triangle centered atn(1)i .

Stereographic coordinates ofn(0)i , n
(2)
i , andn(3)i (zero forn(1)i ) in the plane tangential to the

unit sphere atn(1)i are obtained by projecting from the sphere center onto this plane, and8 is
approximated as linear plus quadratic functions of the stereographic coordinates. The linear
part is known exactly through8 and∇‖8 atn(1)i , and the quadratic part is found by fitting
8 to its values atn(0)i , n

(2)
i , andn(3)i . Minimization of the approximating function gives a

new initial pointn(0)i , and the process is repeated until‖∇‖8‖<δ2. Upon convergence, the
C andE coefficients in (4.1) also give the mean curvaturesk(xi )=−(C + E).

In dynamical simulations (Section 6), withδ1= 10−4, δ2= 10−5 and the initial approx-
imation to{ni } from the preceding step, typically 10–20 calculations of5i and∇5i per
node suffice, and so the BPS-part of our code is relatively inexpensive, even forλ= 1.
“Spline” in the name of the method should not be misleading; from traditional splines, BPS
only borrows the idea to interlink allni through a sparse matrix.

Figures 7–9 demonstrate the effect ofcs on the accuracy of the normal-vector calculations
by BPS for ellipsoidsx2/a2 + y2/b2 + z2/c2= 1 and an axisymmetrical spool-like shape
obtained by rotating the curvex2= (0.2z2+ 0.05)2(1− z2) (the insert in Fig. 9b) about the
z-axis. Unit-sphere triangulations intoN4 = 80, 320, 1280, and 5120 elements were pre-
pared by a standard refinement procedure (e.g., [2]) from an icosaedron and subject to a ran-
dom rotation (such a rotation may slow down the convergence but was used for generality).
The simplest mappings(x, y, z)→ (ax, by, cz) and(x, y, z)→ ((0.2z2+0.05)x, (0.2z2+
0.05)y, z) were then used to obtain ellipsoid and spool shape triangulations from unit-
sphere triangulations. Intriguingly, Figs. 7–9 and additional calculations for other shapes
reveal thatcs= 1 is always a much preferable choice (except for very crudeN4) and gives
a striking advantage over the local best paraboloid method(cs= 0) for fine triangulations.
For example, for the ellipsoida= 1, b= 0.5, c= 0.3, andN4 = 1280–5120, the average
error of BPS is 29–60 times less, and the maximum error is 7–22 times less, compared to
the best-paraboloid method (Figs. 7a, 7b).

In contrast, for the curvatures, the new method does not offer any significant improve-
ments over the local best-paraboloid technique. Despite this bottleneck, using BPS with
cs= 1 drastically improves the quality of long-time multidrop simulations (Section 6),
probably because accurate normals are essential in updating the surfaces. From our experi-
ence, BPS is recommended for drops with large deformations, but still away from breakup
and cusping. In breakup simulations, not considered herein, the present version of BPS may
be unstable, and we have preferred local methods [3]. As our most recent multidrop calcu-
lations show, it is reasonable to switch, in exclusive cases, from BPS to the best-paraboloid
method for individual drops with abnormal high-curvature zones. Advantages over the
contour integration method for determining the mean curvatures are described in [2].

5. ADDITIONAL DETAILS

5.1. Passive Mesh Stabilization

A familiar difficulty in 3D boundary-integral calculations for deformable drops is dy-
namical mesh degradation. Namely, if the collocation nodes are simply advected with the
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FIG. 7. The average (a) and maximum (b) absolute errors‖n − nexact‖ in the normal vector calculation by
BPS for a 3D ellipsoid with different numbersN4 of triangular elements; the limitcs= 0 corresponds to the local
best paraboloid method.

fluid velocity or with the surface normal velocity, an initially regular unstructured mesh of
triangles on a surface becomes highly irregular and invalid after a short simulation time.
We use one of the passive mesh stabilization schemes [3] to construct an additional global
tangential field on each surfaceSα separately from the solution of a variational problem to
prevent mesh degradation. Namely, at any instant of time, the vertex velocitiesVi = dxi /dt
to be used in the shape updates are required to minimize

F =
∑
xi j

1

‖xi j ‖4
{

d

dt
[xi j · (n∗j − n∗i )]

}2

+ c1〈|kmax|〉2
∑
xi j

1

‖xi j ‖4
[

d

dt
‖xi j ‖2

]2

+ c2〈|kmax|〉2
∑
4

1

S2
4

(
dS4
dt

)2

(5.1)
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FIG. 8. The average (a) and maximum (b) absolute errors‖n − nexact‖ in the normal vector calculation by
BPS for a disk.

under the constraintsVi · ni =qi , where the normal velocitiesqi are given by the solution
of the boundary-integral equations. The summations in (5.1) are over all mesh edgesxi j =
x j − xi (with i < j ) on Sα and over all mesh triangles4 on Sα with areasS4; n∗i is the
normal atxi calculated by locally fitting the best plane [3],|kmax| =max(|k1|, |k2|) is the local
maximum of two principal curvatures, and〈· · ·〉 stands for the surface average. As explained
in [3], the first term (5.1) is responsible for anisotropic mesh adaptation to high curvature,
the second term (5.1) prevents the edgesxi j with low curvature alongxi j from excessive
elongation, and the last term (5.1) resists triangle degeneration. Excessive adaptivity to high
curvature zones may be disadvantageous, especially when these zones are rare and have a
small effect on overall dynamics or macroscopic quantities of interest; for weak adaptivity,
we set relatively high values for the constantsc1= 1 andc2= 2. With some effort,F is
expressed [3] as a quadratic function of{Vi } and minimized by conjugate gradient iterations
[2]. Note that this method uses meshes with fixed topology and allows the elements to be
highly stretched (which is natural, since the direction along a drop is typically the one of
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FIG. 9. The average (a) and maximum (b) absolute errors‖n − nexact‖ in the normal vector calculation by
BPS for the axisymmetrical spool-like shape shown in (b).

slow spatial variation of unknowns), in contrast to essentially isotropic techniques [40–
42] of mesh restructuring into compact elements. Besides, our method seeks to minimize,
in some sense, the “kinetic energy” of disordered mesh motion, thus avoiding excessive
numerical stiffness inherent in the simplest grid tension approach.

5.2. Smoothing and Rescaling

A considerable difficulty of boundary-integral calculations for deformable drops is a pos-
sible catastrophic development of shape irregularities. These irregularities may be physical
cusps [3] observed experimentally [43] (typically forλ¿ 1) or numerical artifacts. For our
hybrid code, a finite precisionε of multipole truncations is one obvious source of artificial
irregularities, due to jumps in the velocity calculations. These artificial irregularities are
often amplified by local instabilities due to an insufficiently small time step. While the
precisionε can be tightened with a modest effect on the CPU time (Section 6), integrations
with small time steps would be too expensive. Instead, we follow the approach of [3] to
add an artificial normal velocity to that provided by the boundary-integral solution at each
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step to dynamically smooth irregularities. Unlike in [3], we use a weaker, differential form
of smoothing which is most suitable for suppressing artificial irregularities. Namely, the
normal velocityq= v · n on Sα is modified to

q(x)+ εsa
5〈|q|〉α∇2

S(k
3(x)) (5.2)

in collocation nodesx= xi . Here,εs¿ 1 is a smoothing parameter,〈|q|〉α is the average of
|q| overSα, and∇2

S is the surface Laplacian. The additional term (5.2) has a zero mean on
Sα and is small, except in the irregularity regions. Strong sensitivity to the curvature and
an odd power ofk in (5.2) have a restoring effect irrespective of the sign ofk and tend to
suppress shape irregularities. It is possible to chooseεs to facilitate long-time calculations
with a negligible effect of smoothing on the overall dynamics (Section 6).

With k andn provided by BPS (Section 4), the smoothing term (5.2) is calculated as
follows. We approximatek3(x)− k3(xi ) at x≈ xi as a quadratic polynomial of the coordi-
nates of(x− xi ) in the tangential plane atxi . Five coefficients are found by least-square
fitting to k3(x j )− k3(xi ) at the adjacent nodesx j ∈Ai , and the linear part gives∇S k3(xi ).
With ∇S k3(x) known on the entire surfaceSα, the flux of∇S k3 through a small closed
contour of mesh triangles with the vertexxi gives the divergence,∇S · ∇S k3, atxi and the
smoothing term (5.2). This procedure has a crude, but adequate, accuracy for∇2

S k3, since
the additional term (5.2) is generally small and used only for smoothing.

We also reset the volumes of all drops to their initial value at each time step by shape
rescaling at drop centroids, to avoid a long-time cumulative error. The necessary shape
changes at each step are too small to produce artificial overlappings, even at high volume
fractions. The effect of rescaling disappears altogether for fine triangulations but is expected
to accelerate convergence. Interestingly, this rescaling, of frequent use in boundary-integral
calculations, was found undesirable in our critical breakup study [3]. In the present work,
however, most drops are far away from breakup conditions.

The choice of the time step is discussed in Appendix C.

6. NUMERICAL RESULTS

As the first test, we compared the sedimentation rate|(vS)3|/Uo (whereUo is the settling
velocity of an isolated drop) from (2.18) for static random configurations of spherical
drops by the present code with the calculations of Mo and Sangani [35]. They used a
purely multipole,O(N2) code forN= 16 drops in a cell with averaging over 20 random
configurations and an extrapolationN→∞ by an effective-medium approximation (which
is difficult to generalize for nonspherical drops considered below). We usedN= 64–125,
N4 = 1280 triangular elements per drop, precisionε= 5× 10−4a2, thresholdko= 15 and
averaging over 20–70 configurations prepared by the Monte Carlo method (e.g., [44])
for the same “hard-sphere” distribution. Table I gives, for everyλ and the drop volume
fraction c, our results atN= 64 (the top value) and 125 (the bottom value), along with
the calculations of Mo and Sangani [35] forN= 16 (the top value) and extrapolated to
N=∞ (the bottom value). Our results show a systemic, but very slight increase asN is
changed from 64 to 125. For each pair ofλ, c andN= 64, 125, a few configurations were
selected to verify that the increase ofN4 from 1280 to 2160 changed the sedimentation
rate by less than 0.19%; tightening the precisionε to 10−4a2 had even a much smaller
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TABLE I

The Average Sedimentation Rate for Static Random Suspensions of Spherical Drops

Present code Mo and Sangani [35]
N = 64 (top),N = 125 (bottom) N = 16 (top),N →∞ (bottom)

c λ = 1 10 c λ = 1 10

0.25 0.299± 0.003 0.200± 0.002 0.25 0.250 0.190
0.303± 0.002 0.203± 0.002 0.30 0.23

0.35 0.191± 0.003 0.110± 0.002 0.35 0.146 0.098
0.194± 0.002 0.112± 0.001 0.17 0.11

0.45 0.117± 0.001 0.0577± 0.0007 0.45 0.088 0.051
0.120± 0.001 0.0592± 0.0005 0.099 0.055

Note.The statistical errors for the present calculations correspond to the 67% confidence level.

influence (a more obscure accumulated effect ofε on long-timedynamicalsimulations is
discussed below). For one configuration withN= 64, c= 0.45, λ= 10, andN4 = 1280,
we checked that using the exact curvature and normals for spheres changed our boundary-
integral sedimentation rate by less than 0.0001%. Overall, our results are in a good agreement
with the extrapolated values of Mo and Sangani [35]; minor differences may be due to
larger statistical uncertainties forN= 16 than those forN= 64, 125 in Table I, and/or
an approximate character of the effective-medium extrapolationN→∞ (as suggested
by Fig. 5 of Sangani and Mo [11]). Without an extrapolation, however, small systems
(N=O(10)) would be inadequate for sedimentation calculations.

LargeN are even more important in dynamical simulations for sedimenting deformable
drops, because of clustering. Figure 10 presents snapshots of our simulation forB= 1.75,
c= 0.25, λ= 1, N= 125, N4 = 1280, ε= 5× 10−4a2, ko= 15, εs= 1.5× 10−5, and the
time step parameter (Appendix C)c4t = 1.85 for different values of the microstructural
time t̃ = ta; only the drops with centroids in [0, 1)3 are shown. As for Table I, the initial,
“well-mixed” state (̃t = 0) of non-overlapping spherical drops was prepared by the Monte
Carlo method [44]. Figure 11 shows the shape and mesh evolution for one chosen drop
which experiences large deformations. It is seen that the passive mesh stabilization (Sub-
section 5.1) maintains the mesh quality for long-time simulations; byt̃ = 180, a single drop
would have fallen 48 radii. The simulation in Fig. 10 demonstrates the phenomenon of
clustering of an initially homogeneous emulsion, leading to the formation of holes and a
considerable increase in the sedimentation rate (see below).

Because of the large size of the code, it was crucial to test our hybrid scheme of calculating
the inhomogeneous term (2.7a)F(y) for arbitrary shapes. The run in Fig. 10 was interrupted
at t̃ = 144.6 to compare ourF(xi ) with exact valuesFex(xi ) (for a given triangulation)
obtained by standard point-to-point summations in (3.4a) and (3.8a), i.e., without drop
partitioning into blocks and multipoles. In the point-to-point scheme,G(x j − y) was split
into (G0+G1)(x j + k− y), with x j + k− y∈ [− 1

2,
1
2)

3 and the integerk, and the smooth
part G1 was calculated as the quadratic Taylor approximation at the nearest node of a
161× 161× 161 mesh in [− 1

2,
1
2]3 through tabulated derivatives ofG1 to the second order

in [0, 1
2]3 and symmetry properties; this procedure givesG(x j − y)without any appreciable
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FIG. 10. Snapshots of the dynamical simulation from a homogeneous initial state of spherical drops forB=
1.75, c= 0.25, λ= 1, N= 125, N4 = 1280, ε= 0.0005a2, ko= 15, εs= 1.5× 10−5, and c1t = 1.85. The drops
sediment downwards.

error. We considered three criteria to quantify the difference betweenF andFex,

δ1(F,Fex) = 1〈
F2

ex

〉1/2 max
α,xi∈Sα

‖F(xi )− Fex(xi )‖, (6.1a)

δ2(F,Fex) = 1

N

N∑
α=1

{
1〈

F2
ex

〉
α

max
xi∈Sα

[F(xi )− Fex(xi )]
2

}1/2

, (6.1b)

δ3(F,Fex) =
[〈
(F − Fex)

2
〉/〈

F2
ex

〉]1/2
. (6.1c)

Here,〈· · ·〉α and〈· · ·〉 denote averaging overSα and all surfaces, respectively.
Table II demonstrates that allδ1, δ2, δ3→ 0 asε→ 0, as a check of the convergence of

our results to those by the standard method. It takes our code only 60 and 84 seconds of
CPU time on a DEC 500au to calculate all the boundary integrals (2.7a) forε= 5× 10−4a2

and 5× 10−5a2, respectively (Table II); these times are much faster than 95 min for the
standard optimized point-to-point summation code, even with a linear interpolation for the
smooth partG1 of Green’s function. Thus, without any significant loss of accuracy, two-
orders-of-magnitude advantage is gained by the present code forN=O(100). The limit
Fex is achieved, asε→ 0, irrespective ofko, but using high-order multipoles is essential at the
advanced stage of drop deformation. For example, whenko is reduced to 6, the calculation
of boundary integrals (2.7a) forε= 5× 10−4a2 slows down almost three times, because the
multipole expansions, when insufficient, are replaced by costly direct summations; largeko
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FIG. 11. The mesh and shape evolution for one chosen drop with large deformations from the simulation
shown in Fig. 10. The plane of view contains the line of maximum elongation (with max‖xi −x j ‖) and the vertical.

are even more important for higher precisions. The rangeko= 15–20 was found optimal
in this and the following simulations. The total CPU time per time step slightly grows (by
30%) from the beginning to the end of the simulation in Fig. 10, mainly due to the increase
in the number of blocksBγ (209 at t̃ = 144.6) and clustering. The whole run in Fig. 10
took 2000 second-order Runge–Kutta steps (with two-fold boundary-integral solutions at
each step) and about four days on a DEC 500au, with BPS and mesh stabilization parts
contributing roughly 20% each; for a standard, point-to-point summation of interactions,
this simulation would take nine months.

TABLE II

The Convergence of the Present SolutionF to the StandardO(N2N2
4) Solution Fex

asε→ 0, in the Single-Layer Test forN = 125, N4 = 1280

ε δ1 (F,Fex) δ2 (F,Fex) δ3 (F,Fex) CPU time (s)

5× 10−2a2 3.46× 10−1 1.63× 10−1 4.52× 10−2 —
5× 10−3a2 1.44× 10−1 4.88× 10−2 1.18× 10−2 48
5× 10−4a2 2.38× 10−2 9.79× 10−3 2.27× 10−3 60
5× 10−5a2 7.20× 10−3 1.67× 10−3 3.70× 10−4 81
5× 10−6a2 6.54× 10−4 2.22× 10−4 5.24× 10−5 112

Note.The CPU times (in seconds) are for the calculation ofF by the present method.
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FIG. 12. The effect of the precision parameterε on the sedimentation rate for individual realizations at
B= 1.75, c= 0.25, λ= 1, andN4 = 1280. The upper two curves are for a single initial realization ofN= 125
drops (c1t = 1.85); the bottom two curves start from another single initial realization ofN= 64 drops(c1t = 1.7).
Solid lines are forε= 5× 10−5a2, ko= 20; short-dashed lines are forε= 5× 10−4a2, ko= 15. The short-dashed
line for N= 125 corresponds to the simulation in Fig. 10. The long-dashed line is for another random initial
configuration withN= 125 andε= 5× 10−4a2.

We have studied the effects of precision, smoothing, and triangulation on the sedi-
mentation rate indynamicalsimulations by repeating the run in Fig. 10 fromt̃ = 0 with
different ε, εs, N4, and by taking another initial random realization of spherical drops
with c= 0.25, N= 64 (initial configurations are available from the authors). Increasing the
smoothing parameterεs from 1.5× 10−5 to 4.5× 10−5 did not show any appreciable effects
in the studied time range. Small differences between the results forε= 5× 10−4a2 (short-
dashed lines) and 5× 10−5a2 (solid lines) in Fig. 12 suggest thatε≤O(10−4a2) gives a
practically precision-independent sedimentation rate fort̃ < 180. With a crude precision
ε= 5× 10−3a2, the run forN= 125, N4 = 1280, c1t = 1.85 failed early at̃t = 83 due to
instability. Compared to the run in Fig. 10, the simulation forN= 64, ε= 5× 10−4a2, N4 =
1280, c1t = 1.7, with 2000 time steps required to reacht̃ ≈ 191, took about 44 h on a DEC
500au, showing anO(N), rather thanO(N2) scaling for moderately largeN= 64− 125.
The runs forε= 5× 10−5a2 were only slightly (15–20%) slower than those forε= 5×
10−4a2. The difference between the solid lines forN= 64 and 125 in Fig. 12 does not
necessarily mean slow convergence of the results, asN→∞. There is an additional de-
pendence on the initial configuration (as illustrated by a long-dashed line forN= 125 in
Fig. 12), and the results of many initial configurations should be averaged before taking the
limit N→∞; this task, however, goes beyond the scope of the present paper.

Figures 13a, 13b show the sensitivity of the precision-independent results (ε= 5× 10−5a2)
to surface triangulations. When BPS is used for the curvatures and normals withcs= 1 (solid
and short-dashed lines in Figs. 13a, 13b), the results forN4 = 1280 and 720 are in a remark-
able agreement up to large times, both forN= 125 and 64, even though the sedimentation
rate is a strong and complex function of time for individual realizations. In contrast, for
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FIG. 13. The effect of surface triangulations on the sedimentation rate for individual realizations at
B= 1.75, c= 0.25, λ= 1, andε= 5× 10−5a2. The initial configurations withN= 125 (a) andN= 64 (b) are
identical to those for the two upper curves(N= 125) and the two bottom curves(N= 64) in Fig. 12. Solid
(N4 = 1280) and short-dashed(N4 = 720) lines are for the simulations using BPS. Dark squares (N4 = 1280)
and long-dashed lines(N4 = 720) are for the simulations using the local best paraboloid method.

the local best-paraboloid method(cs= 0), the calculations forN4 = 1280 and 720 (dark
squares and long-dashed lines in Figs. 13a, 13b) are convergent only in a more limited time
range.

An initial decrease of|(vS)3|/Uo in Figs. 13a, 13b is not accidental. At small times, drop
deformation from the initial spherical shapes plays a minor role. On theO(c2) level of pair
interactions, aflowingemulsion of spherical drops was shown to be more viscous than in
the well-mixed state (without the Brownian contribution to the stress) [45]; accordingly,
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FIG. 14. Snapshots of the dynamical simulation from a homogeneous initial state of spherical drops
for B= 2.5, c= 0.4, λ= 0.25, N= 64, N4 = 2160, ε= 5× 10−5a2, ko= 20, εs= 1.5× 10−5, andc1t = 0.5. The
drops sediment downwards.

such an emulsion is expected to sediment slower, which is confirmed by Figs. 13a, 13b.
Further drop motion leads to stretching, with a strong preference for almost vertically aligned
prolate shapes. However, the deformation itself cannot account for a strong increase of the
sedimentation rate. For example, the model of a vertically alligned solid spheroid with the
deformation equivalent to the average deformation in Fig. 10 att̃ = 180 gives the settling
velocity of an isolated drop as no more than 4% higher than for a solid sphere of the same
volume (e.g., [46]). The actual increase of|(vS)3|/Uo is much larger and is due to clustering,
an indirect consequence of drop deformations.

A considerably more difficult simulation is presented in Fig. 14 forc= 0.4,B= 2.5,
λ= 0.25, N= 64, N4 = 2160, ko= 20, εs= 1.5× 10−5, and ε= 5× 10−5a2. Unlike for
c= 0.25 andλ= 1 (Fig. 10), much smaller time steps had to be used to maintain the sta-
bility (c4t = 0.5). The iterative solutions of (2.12) were terminated onceδ2(w(ν+1),w(ν)) <
10−3 for two consecutive iterationsw(ν),w(ν+1), with δ2 being a compromise between the
conservative (6.1a) and loose (6.1c) criteria; typically, 3–4 iterations sufficed. A similar
run was performed forN4 = 1280 to t̃ = 45.4. In these simulations, the average gap be-
tween a drop and its neighbors was estimated as 0.03a for any t̃ > 35; the minimum gap
was much smaller, just a few thousandths ofa. Despite such small separations, our runs
could proceed without any artificial subgrid lubrication or repulsive forces. Instead, it is
the physical development of sharp tails (Fig. 15) which caused the calculations to stall.
Despite this difficulty, our numerical solutions are capable of describing strong temporal
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FIG. 15. The mesh and shape evolution for one chosen drop from the simulation shown in Fig. 14 and a similar
simulation withN4 = 1280. Frames̃t = 10 to 35 are forN4 = 1280; frames̃t = 40 and 45 are forN4 = 2160. The
plane of view containsg and the line of maximum elongation.

changes of the sedimentation rate, about twofold from its minimum (Fig. 16); the results for
N4 = 2160 (a solid line) and 1280 (a dashed line) are in a good agreement. An additional
run was performed forN4 = 1280 and a cruder precisionε= 2× 10−4a2 to t̃ = 43.6, but
showed a much smaller accumulated effect ofε on the sedimentation rate (within 0.25% up
to t̃ = 43.6) than in the simulations forc= 0.25, λ= 1,B= 1.75 (see above); the difference
between the two curves in Fig. 16 is due to triangulation error.

To check our hybrid scheme for the double-layer term (2.12b), the run forN1= 1280
andε= 2× 10−4a2 in Fig. 16 was interrupted at̃t = 38.3 (with 115 blocks) to compare
one iteration of (2.12b) by our code at different precisionsε in the double-layer truncations
(Subsection 3.5) with one iteration calculated in a standard point-to-point manner (using,
again, a quadratic Taylor approximation from the table for the smooth stresslet part,τ 1).
In all these tests,F(y) was fixed from our hybrid calculation withε= 2× 10−4a2, since
this part of the code was already verified forλ= 1; the inhomogeneous term (2.7a) and
BPS calculations required 44 and 8–9 s, respectively, on a DEC 500au. The values of
δ1(v, vex), δ2(v, vex), andδ3(v, vex) (wherev andvex are the velocities (2.17) by our code
and the standard scheme, respectively) in Table III confirm the convergencev→ vex for
ε→ 0. In this test, one velocity iteration of our code required 56 and 80 s atε= 5× 10−4a2

and 5× 10−5a2, respectively, on a DEC 500au; fort̃ = 0, when the drops are spherical, these
CPU times are even smaller (27 and 38 s atε= 5× 10−4a2 and 5× 10−5a2, respectively). In
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FIG. 16. The sedimentation rate vs time for the simulation shown in Fig. 14 (solid line) and a similar simulation
with N4 = 1280 (dashed line).

contrast, for theseN= 64 andN4 = 1280, one iteration by the standardO(N2N2
4) method

takes 63 min at everỹt , even with the simplest, linear interpolation forτ 1. To reach the
samẽt = 45, the runs forN4 = 1280, ε= 5× 10−5a2 andN4 = 2160, ε= 5× 10−5a2 took
2500 and 3400 second-order Runge–Kutta steps, and 15 and 38 days on a DEC 500au,
respectively; the CPU scaling per time step is closer toO(N4), rather thanO(N2

4), in
these simulations. Although these computer expenses appear large, a standard point-to-
point method would require about 2.5 and 9 years for the same runs withN4 = 1280 and
2160, respectively, tõt = 45!

Koch and Shaqfeh [47] predicted analytically, on the pairwise level, the instability of a
dilute suspension of sedimenting solid spheroids. We attribute the nonexistence of a steady
state in our simulations to some qualitative analogy between the two systems. Owing to
this unsteady character of the problem, ensemble averaging over many initial realizations
is essential before taking the limitN→∞, and the average sedimentation rate should be
studied as a function of time. Our systematic calculations of this kind, relatively easy for
λ = O(1), will be published elsewhere.

TABLE III

The Convergence of the Present Solutionv to the StandardO(N2N2
4) Solution vex, asε→ 0,

in the Double-Layer Test (One Velocity Iteration) for N = 64, N4 = 1280

ε δ1 (v, vex) δ2 (v, vex) δ3 (v, vex) CPU time (s)

1.25× 10−1a2 2.86× 10−1 1.28× 10−1 2.98× 10−2 26
1.25× 10−2a2 5.57× 10−2 3.44× 10−2 7.58× 10−3 33
1.25× 10−3a2 1.18× 10−2 6.73× 10−3 1.42× 10−3 47
5.00× 10−4a2 6.21× 10−3 3.28× 10−3 6.93× 10−4 56
7.50× 10−5a2 1.52× 10−3 6.61× 10−4 1.42× 10−4 75

Note.The CPU times (in seconds) are for one iteration by the present method(ko= 15–20).
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7. CONCLUSIONS

The efficient 3D algorithm has been constructed for hydrodynamical interaction of many
deformable drops at zero Reynolds numbers with triply periodic boundaries and subject
to gravity. The algorithm is a hybrid of boundary-integral and economical multipole tech-
niques, with extensive use of rotational transformations to optimize near-field summa-
tions. Very high, two-order-of-magnitude gains in computational speed over the standard
boundary-integral techniques are achieved with the present method, even for a moderately
large number of dropsN=O(102) with surface resolutions ofN4 ∼ 103 triangular ele-
ments per drop. Also a part of the code is the new, best paraboloid-spline technique (BPS)
for the normal vectors and curvatures on unstructured triangulations, greatly improving
the quality of long-time dynamical simulations. Our systematic dynamical calculations of
the sedimentation rate for viscosity ratiosλ=O(1) and N ≤ 200 using this code are in
progress. Attempts will be made to expedite calculations in the most difficult caseλ¿ 1,
by improving the simplest near-singularity subtraction (3.9a)–(3.9b) (to allow for limited
triangulations) and using Lanczos’ biconjugate gradient iterations [2]. With minor changes,
our code is applicable to moderately polydisperse systems.

Since the present or similar 3D hydrodynamical problems have been unchallenged by
other fast multiparticle strategies, it is difficult to make firm judgements about their possible
performance in our case. We can only note that the new 3D FMM [26] has shown about 29-
and 53-fold advantages over direct summations for 40,000 and 80,000 charges, respectively,
in the case of Coulombic, free-space interactions with random uniform distributions in a
cube and moderately high accuracy (Table 2 of [26]). For a similar actual accuracy, we
have observed, with our code, about 66- and 71-fold advantages over direct summations in
the double-layer and single-layer tests for(N4/2+ 2)N= 41,088 and 80,250 collocation
nodes, respectively, for the more involved case of Stokesian interactions with periodic
boundaries at the advanced stage of drop deformation (Section 6). These gains are even
higher for nearly spherical drops. Although it is attractive to test different schemes for
multidrop interactions, the present technique may be close to optimal for up to several
hundred drops withN4 ∼ 103. Larger systems(N∼ 103) would likely require additional
ideas to avoidO(N2) scaling, namely, the FMM merging of singularities or P3M schemes.
Such 3D systems of drops with adequate resolutionN4 ∼ 103, however, would be too
prohibitive for dynamical simulations on present-day computers. Also, if each drop had to
be discretized by a very large number of elements(N4 ≥O(104)), a faster scheme would be
needed for self-interactions; this resolution, however, would limit the present-day dynamical
simulations to a few drops only.

Most of our code is applicable to study the rheological behavior of many drops in a shear
flow, rather than subject to gravity; the far-field part (Subsection 3.4), however, presents an
additional challenge, since the basic periodic cell changes with time. The physical behavior
of drops in the two cases is surprisingly different. For the same volume fraction, the effect
of interactions on sedimentation is much stronger than on the rheology in a shear flow. With
deformation, sedimenting drops cluster (which would make simulations forN=O(10)
meaningless); in contrast, calculations [5] for several drops at small and moderate volume
fractions indicate the absence of clustering in a shear flow, making the use of largeN in
this case less imperative. However, for highly concentrated 3D sheared emulsions, close to
liquid foams, largeN are needed, at least, to avoid ergodic difficulties, and our techniques
can handle such systems.
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APPENDIX A

The Construction of Minimal Spherical Shells

We use the simplest stochastic procedure to construct the minimal spherical shellDγ
aroundBγ with sufficient accuracy. An initial approximation(xo

γ )
(0) to the shell center,xo

γ ,
is the midpoint of the block diameter. If(xo

γ )
(ν) is theνth iteration ofxo

γ , and(do
γ )
(ν)=

max|x j − (xo
γ )
(ν)| overx j ∈Bγ is the radius of the minimal shell aroundBγ with the center

(xo
γ )
(ν), then the improvement of(xo

γ )
(ν) is tried as

(
xo
γ

)(ν+1) = (xo
γ

)(ν) + ξ |Bγ |−1/2
[
x j∗ −

(
xo
γ

)(ν)]
, (A.1)

where ξ ∈ (0, 1) is a random number,|Bγ | is the number of nodes inBγ , and |x j∗ −
(xo
γ )
(ν)| = (do

γ )
(ν), x j∗ ∈Bγ ; displacement (A.1) is accepted if(do

γ )
(ν+1)≤ (do

γ )
(ν), while oth-

erwise a new random numberξ is tried, etc. With|Bγ |/2 Monte Carlo steps (accepted or
not), the minimal shell construction for allBγ takes a negligible portion of total expenses.

APPENDIX B

Fast Pointwise Calculation of Lamb’s Series

The form (3.19) for Lamb’s regular series (3.17) simply follows from the fact that (3.17)
minus the first term of (3.19) is a harmonic field (cf. with Subsection 3.4). Explicit expres-
sions for Cartesian components(Hn,m)k of Hn,m are obtained upon substituting (3.18) into
(3.17), and using (3.36), (3.41) withRn instead of 1/Rn+1, (3.63), and additional recurrent
relations

(D1± i D2)
[
ρnYn,m(ρ)

]=∓[ (2n+ 1)(n∓m− 1)(n∓m)

2n− 1

]1/2

ρn−1Yn−1,m±1(ρ). (B.1)

The result takes the form

(Hn,m)1 = (n+ 2)do
δ

4n(2n+ 1)
(αn−1,−m−1An−1,m+1− αn−1,m−1An−1,m−1)

+ 1

2do
δ

(α−n−2,−m−1Bn+1,m+1− α−n−2,m−1Bn+1,m−1)

+ i

2
(γn,m−1Cn,m−1+ γn,−m−1Cn,m+1), (B.2a)

(Hn,m)2 = i (n+ 2)do
δ

4n(2n+ 1)
(αn−1,−m−1An−1,m+1+ αn−1,m−1An−1,m−1)

+ i

2do
δ

(α−n−2,−m−1Bn+1,m+1+ α−n−2,m−1Bn+1,m−1)

+ 1

2
(γn,m−1Cn,m−1− γn,−m−1Cn,m+1), (B.2b)

(Hn,m)3 = − (n+ 2)do
δ

2n(2n+ 1)
βn−1,mAn−1,m + β−n−2,m

do
δ

Bn+1,m − imCn,m, (B.2c)
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where, for brevity,

αn,m =
[
(2n+ 1)(n+m+ 1)(n+m+ 2)

2n+ 3

]1/2

,

βn,m =
[
(2n+ 1)(n+ 1−m)(n+ 1+m)

2n+ 3

]1/2

, (B.3)

γn,m = [(n−m)(n+m+ 1)]1/2,

and the terms withAn′,m′ andCn′,m′ for n′ < 0 or |m′| > n are omitted.
Similarly, using (3.31), (3.36), and (3.41), Lamb’s singular series (3.12) can be written

in the form (3.21), with

(Fn,m)1 =
(n− 1)do

γ

4(n+ 1)(2n+ 1)

[
α−n−2,m−1A(γ )−(n+2),m−1− α−n−2,−m−1A(γ )−(n+2),m+1

]
+ 1

2do
γ

[
αn−1,−m−1B(γ )−n,m+1− αn−1,m−1B(γ )−n,m−1

]
+ i

2

[
γn,m−1C(γ )

−(n+1),m−1+ γn,−m−1C(γ )

−(n+1),m+1

]
, (B.4a)

(Fn,m)2 = −
i (n− 1)do

γ

4(n+ 1)(2n+ 1)

[
α−n−2,m−1A(γ )−(n+2),m−1+ α−n−2,−m−1A(γ )−(n+2),m+1

]
+ i

2do
γ

[
αn−1,−m−1B(γ )−n,m+1+αn−1,m−1B(γ )−n,m−1

]
+ 1

2

[
γn,m−1C(γ )

−(n+1),m−1− γn,−m−1C(γ )

−(n+1),m+1

]
, (B.4b)

(Fn,m)3 = −
(n− 1)do

γ

2(n+ 1)(2n+ 1)
β−(n+2),mA(γ )−(n+2),m−

βn−1,m

do
γ

B−n,m− imC(γ )

−(n+1),m. (B.4c)

APPENDIX C

Time-Step Strategy

It is difficult to set rational and universal rules for the time step, especially because the
present problem does not have a statistically steady-state solution, and so the optimum time
step strategy would depend on the time range of interest. We found the common stability
criterion (e.g., [30])1t < K1x (where1x is the minimum mesh edge) oversimplified,
since the optimum factorK depends on shapes and meshes. In the present calculations, the
nondimensional time step (based on the length and velocity scales of Section 2) was chosen
empirically as

1t = c1t (1+ λ)Bmin(11,12)/a
3, (C.1)

wherec1t =O(1) is a numerical factor,

11 = min
i

1xi

max(|k1(i )|, |k2(i )|) , 12 = min
i

2h1/2
i 1xi[

k2
1(i )+ k2

2(i )
]1/2 , (C.2)
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1xi is the minimum of mesh edges with vertexi, hi is the minimum of distances from node
i to nodes on other surfaces,k1(i ) andk2(i ) are the principal curvatures at nodei , and the
minima in (C.2) are taken over all nodesi . The factorc1t is largely independent ofN and
triangulations, but is strongly sensitive to the volume fraction.
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